The value of ∫01xdx by Trapezoidal rule taking x = 4 is
0.34375
0.5
0.38387
0.353367
∫dxx4 - 1 is equal to
14logx - 1x + 1 - 12tan-1x + C
logx - 1x + 1 + C
14logx - 1x + 1 + 12tan-1x + C
logx - 1x + 1 - 12tan-1x + C
If e0 = 1, e1 = 2.72, e2 = 7.39, e3 = 20.09, e4 = 54.60, then the value of ∫04exdx using Simpson's rule, will be
5.387
53.87
52.78
53.17
∫- 12x3 - xdx is equal to
11
4
114
411
According to Simpson's rule, the value of ∫17dxx is
1.358
1.958
1.625
1.458
If ∫sin2tan-11 - x1 + xdx = Asin-1x + Bx1 - x2 + C, then A + B is equal to
10
12
1
- 12
∫1e1logxdx is equal to
1e
e
21 - 1e
None of the above
limx→0∫0x2sintdtx3 is equal to
23
13
0
∞
By trapezoidal rule, the approximate value of the integral ∫06dx1 + x2 is
1.3128
1.4108
1.4218
None of these
The value of the integral I = ∫tanx + cotxdx, where x ∈ 0, π2, is
2sin-1cosx - sinx + C
2sin-1sinx - cosx + C
2sin-1cosx + sinx + C
- 2sin-1sinx + cosx + C