∫0100ex - xdx is equal to from Mathematics In

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

If straight f left parenthesis straight x right parenthesis space equals space fraction numerator straight e to the power of straight x over denominator 1 plus straight e to the power of straight x end fraction. space straight I subscript 1 space equals space integral subscript straight f left parenthesis negative straight a right parenthesis end subscript superscript straight f left parenthesis straight a right parenthesis end superscript space xg open curly brackets straight x open parentheses 1 minus straight x close parentheses close curly brackets dx space and space straight I subscript 2 space equals space integral subscript straight f left parenthesis negative straight a right parenthesis end subscript superscript straight f left parenthesis straight a right parenthesis end superscript space straight g open curly brackets straight x open parentheses 1 minus straight x close parentheses close curly brackets dx then the value of I2/I1 is

  • 2

  • -2

  • 1

  • 1

100 Views

32.

The value of 

  • π/4

  • π/8

  • π/2


33.

The Integral is equal to

(where C is a constant of integration)

  • -11+ cot3 x  + C

  • 13(1 + tan3 x)  + C

  • -13(1 + tan3 x ) +C

  • 11+ cot3 x  + C


34.

coslogxdx = F(x) +C, where C is an arbitrary constant. Here, F(x) is equal to 

  • xcoslogx +sinlogx

  • xcoslogx - sinlogx

  • x2coslogx +sinlogx

  • x2coslogx - sinlogx


Advertisement
35.

x2 - 1x4 + 3x2 + 1dx(x > 0) is

  • tan-1x + 1x +C

  • tan-1x - 1x +C

  • logex + 1x - 1x + 1x + 1 + C

  • logex - 1x - 1x - 1x + 1 + C


36.

Let I = 1019sinx1 + x8dx, then

  • I < 10- 9  

  • I < 10- 7  

  • I < 10- 5  

  • I > 10- 7  


37.

Let I0nxdx and I20nxdx, where [x] and {x} are integral and fractional parts of x and n  N - {1}. Then, I1/Iis equal to

  • 1n - 1

  • 1n

  • n

  • n - 1


38.

The value of limnnn2 + 12 +nn2 + 22 + ... +12n is

  • 4

  • π4

  • π4n

  • π2n


Advertisement
39.

The value of 0100ex2dx

  • is less than 1

  • is greater than 1

  • is less than or equal to 1

  • lies in the closed interval [1, e]


Advertisement

40.

0100ex - xdx is equal to

  • e100 - 1100

  • e100 - 1e - 1

  • 100(e - 1)

  • e - 1100


C.

100(e - 1)

Let I = 0100ex - xdx

        = 10001ex - xdx

  x - [x] is a periodic function of period 1 and 0mTf(x)dx = m0Tf(x)dx, where T is period of f(x)

       = 10001exdx  x - x = x for 0 < x < 1

       = 100ex01

       = 100e1 - e0

       = 100(e - 1)


Advertisement
Advertisement