Evaluate the following integral∫- 12xsinπxdx from Ma

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

The value of - 22xcosx + sinx + 1dx

  • 2

  • 0

  • - 2

  • 4


72.

π16πsinxdx is equal to

  • 0

  • 32

  • 30

  • 28


73.

cos2xcosxdx is equal to

  • 2sinx + logsecx +tanx + C

  • 2sinx - logsecx -tanx + C

  • 2sinx - logsecx +tanx + C

  • 2sinx + logsecx -tanx + C


74.

sin8x - cos8x1 - 2sin2xcos2xdx

  • - 12sin2x + C

  • 12sin2x + C

  • 12sinx + C

  • - 12sinx + C


Advertisement
75.

The value of 0πsin50xcos49xdx is

  • 0

  • π4

  • π2

  • 1


76.

2xf'(x) + f(x)log2dx is

  • 2xf'(x) + C

  • 2xf(x) + C

  • 2x(log(2))f(x) + C

  • log(2)f(x) + C


 Multiple Choice QuestionsShort Answer Type

Advertisement

77.

Evaluate the following integral

- 12xsinπxdx


       I = - 12xsinπxdx = - 11xsinπxdx = 12xsinπxdx         = 201xsinπxdx + 12xsinπxdx         = 201xsinπxdx - 12xsinπxdx = 2I1 - I2      I1 = 01xsinπxdx = - xcosπxπ01 + 01cosπxπdx          = - xcosπxπ + sinπxπ201 = 1πand I2 = 12xsinπxdx = - xcosπxπ + sinπxπ212            = - 2π + 0 + - 1π = - 3πSo, 2I1 - I2 = 2π + 3π = 5π - 12xsinπxdx = 5π


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

78.

logx3xdx is equal to

  • 13logx2 + c

  • 23logx2 + c

  • 23logx2 + c

  • 13logx2 + c


Advertisement
79.

ex2x - 2x2dx

  • exx + c

  • ex2x2 + c

  • 2exx + c

  • 2exx2 + c


80.

The value of the integral dxex + e- x2

  • 12e2x +1 + c

  • 12e- 2x +1 + c

  • - 12e2x +1- 1 + c

  • 14e2x -1 + c


Advertisement