∫dxsinx + 3cosx
12logtanx2 - π6 + c
12logtanx4 - π6 + c
12logtanx2 + π6 + c
12logtanx4 + π3 + c
If f(x) = f(a - x), then ∫abfxdx is equal to
∫0afxdx
a22∫0afxdx
a2∫0afxdx
- a2∫0afxdx
The value of ∫0∞dxx2 + 4x2 + 9 is
π60
π20
π40
π80
If I1 = ∫0π4sin2xdx and I2 = ∫0π4cos2xdx, then
I1 = I2
I1 < I2
I1 > I2
I2 = I1 + π4
The integrating factor of the differential equation xlogxdydx + y = 2logx is given by
ex
log(x)
log(log(x))
x
If ∫- 14fxdx = 4 and ∫243 - fxdx = 7, then the value of
∫- 12fxdx is
- 2
3
4
5
If m, n be integers, then find the value of
∫- ππcosmx - sinnx2dx
If I = ∫- ππesinxesinx + e- sinxdx, then I equals
π2
2π
π
π4
C.
Given, I = ∫- ππesinxesinx + e- sinxdx ...(i)⇒ I = ∫- ππesin2π - xesin2π - x + e- sin2π - xdx⇒ I = ∫- π πe- sinxe- sinx + esinxdx ...(ii)On adding Eqs. (i) and (ii), we get 2I = ∫- ππesinx + e- sinxesinx + e- sinxdx⇒ 2I = ∫- ππ1dx⇒ 2I = x- ππ = π + π⇒ I = π
If h(x) = ∫0xsin4tdt, then hx + π equals
hxhπ
hx - hπ
hx + hπ
The value of the integral ∫02x2 - 1dx is
0
2
- 13