The value of integral ∫011 - x1 + xdx is
π2 + 1
π2 - 1
- 1
1
B.
Let I = ∫011 - x1 + xdx= ∫011 - x1 - x2dx= ∫0111 - x2dx - ∫01x1 + x2dx= sin-1x01 + ∫01x1 - x2dxPut t2 = 1 - x2 ⇒ 2tdt = - 2xdx⇒ tdt = - xdx∴ I = sin-11 - sin-10 + ∫10ttdt = π2 + t1 0= π2 - 1
Evaluate ∫x2 + 4x4 + 16dx.
122tan-1x2 - 42x2 + C
122tan-1x2 - 422 + C
122tan-1x2 - 4x2 + C
None of these
Evaluate ∫π43π411 + cosxdx
2
- 2
1/2
- 1/2
If ∫fxdx = fx, then ∫fx2dx is equal to
12fx2
fx3
fx33
fx2
∫sin-12x + 24x2 + 8x + 13dx is equal to
x + 1tan-12x + 23 - 34log4x2 + 8x + 139 + c
32tan-12x + 23 - 34og4x2 + 8x + 139 + c
x + 1tan-12x + 23 - 32log4x2 + 8x + 13 + c
32x + 1tan-12x + 23 - 34log4x2 + 8x + 13 + c
If ∫1xdttt2 - 1 = π6, then x can be equal to
23
3
∫2 - sin2x1 - cos2xexdx is equal to
- excotx + c
excotx + c
2excotx + c
- 2excotx + c
If In = ∫sinnxdx, then nIn - n - 1In - 2 equals
sinn - 1xxcosx
cosn - 1xsinx
- sinn - 1xcosx
- cosn - 1xsinx
If I = ∫x51 + x3dx, then I is equal to
291 + x352 + 231 + x332 + c
logx + 1 + x3 + c
logx - 1 + x3 + c
291 + x332 - 231 + x312 + c
The value of ∫0aa - xxdx is
a2
a4
πa2
πa4