∫e3logxx4 + 1- 1dx is equal to
e3log(x) + c
14logx4 + 1
log(x4 + 1) + c
12logx4 + 1 + c
If ∫0πxfsinxdx = A∫0π2fsinxdx, then A is
0
π
π4
2π
∫- 22xdx is equal to
1
2
3
4
If ∫sinxsinx - αdx = Ax + Blogsinx - α + C, then value of A - B at α = π2 is
- 1
If ∫abx3dx = 0 and ∫abx2dx = 23, then the values of a and b are respectively
1, - 1
- 1, 1
1, 1
- 1, - 1
∫x31 + x435dx is equal to
1 + x3465 + c
1 + x4365 + c
581 + x4365 + c
161 + x436 + c
If u = - f''θsinθ + f'θcosθ and v = f''θcosθ + f'θsinθ, then ∫dudθ2 + dvdθ212dθ is equal to
fθ - f''θ + c
fθ + f''θ + c
f'θ + f''θ + c
f'θ - f''θ + c
B.
Given, u = f"(θ)sinθ+f'(θ)cosθ and v = f"(θ)cosθ+f'(θ)sinθOn differentiating w.r.t. θ respectively, we getdudθ = - f'''θsinθ - f''(θ)cosθ + f''(θ)cosθ - f'(θ)sinθ = - f'''θsinθ - - f'θsinθand dvdθ = f'''θcosθ - f''(θ)sinθ + f''(θ)sinθ - f'(θ)cosθ = - f'''θcosθ - - f'θcosθ∴ dudθ2 + dvdθ2 = f'''θ2 + f'θ2 + 2f'θf'''θ = fθ + f''θ + c
∫e6logex - e5logexe4logex - e3logexdx is equal to
x33 + c
x22 + c
x23 + c
- x33 + c
∫ex1 - x1 + x22dx is equal to
ex1 - x1 + x2 + c
ex11 + x2 + c
ex1 + x1 + x2
ex1 - x1 + x22 + c
∫x4 - 1x2x4 + x2 + 112dx is equal to
x4 + x2 + 1x + c
x2x4 + x2 + 1 + c
xx4 + x2 + 132 + c