∫cosx + xsinxx2 cosxdx is equal to
logsinx1 + cosx + c
logsinxx + cosx + c
log2sinxx + cosx + c
logxx + cosx + c
The integral ∫012sin-1x2xdx equals
∫0π6xdxtanx
∫0π62tanxdx
∫0π22xdxtanx
∫0π62xsinxdx
If ∫0af2a - xdx = m and ∫0afxdx = n, then ∫02afxdx is equal to
2m + n
m + 2n
m - n
m + n
∫- 100100fxdx is equal to
∫- 100100fx2dx
∫- 100100f- x2dx
∫- 100100f1xdx
∫- 100100f- xdx
∫- 11ex3 + e- x3ex - e- xdx is equal to
e22 - 2e
e2 - 2e
2(e2 - e)
0
∫dxx + 1x is equal to
tan-1x + C
2tan-1x + C
tan-1x32 + C
∫logxx2dx is equal to
logxx + 1x2 + C
- logxx + 2x + C
- logxx - 12x + C
- logxx - 1x + C
If ∫fxlogcosxdx = - loglogcosx + C, then f(x) is equal to
tanx
- sinx
- cosx
- tanx
∫xsin-1x1 - x2dx is equal to
x - sin-1x + C
x - 1 - x2sin-1x + C
x + sin-1x + C
x + 1 - x2sin-1x + C
∫4ex - 6e- x9ex - 4e- xdx is equal to
32x + 3536log9e2x - 4 + C
32x - 3536log9e2x - 4 + C
- 32x + 3536log9e2x - 4 + C
- 52x + 3536log9e2x - 4 + C
C.
∫4ex + 6e- x9e2x - 4dx= ∫4e2x + 69e2x - 4dx= 4∫e2x9e2x - 4 + 6∫e- 2x9 - 4e- 2xPut t1 = 9e2x - 4 and t2 = 9 - 4e- 2xdt1 = 18e2xdx and dt2 = 8e- 2xdx= 4∫1t1 . dt118 + 6∫1t2 . dt28= 29∫dt1t1 + 34∫dt2t2= 29logt1 + 34logt2 + C= 29log9e2x - 4 + 34log9 - 4e- 2x + C= 29log9e2x - 4 + 34log9e2x - 4 - 34loge2x + C= 29 + 34og9e2x - 4 - 342x + C ∵ loge = 1= - 32x + 3536log9e2x - 4 + C