∫1 - x1 + xdx is equal to
sin-1x + 1 - x2 + C
sin-1x - 21 - x2 + C
2sin-1x - 1 - x2 + C
sin-1x - 1 - x2 + C
∫dx1 + tanx is equal to
12 + 12logcosx + sinx + C
x2 + 12logcosx - sinx + C
12 + 12logcosx - sinx + C
x2 + 12logcosx + sinx + C
D.
∫dx1 + tanx= ∫cosxsinx + cosx × cosx - sinxcosx - sinxdx= ∫cos2x - sinxcosxcos2x - sin2xdx= 12∫2cos2xcos2xdx - 12∫2sinx . cosxcos2xdx= 12∫1 + cos2xcos2xdx - 12∫sin2xcos2xdx= 12∫sec2xdx + 12∫dx - 12∫tan2xdx= 12 . 12logsec2x + tan2x + 12 . x - 12 . 12logsec2x + C= 14logsec2x + tan2x - 14logsec2x + x2 + C= x2 + 14logsec2x + tan2xsec2x + C= x2 + 14log1 + sin2x C= x2 + 14logsin2x + cos2x + 2sinxcosx + C= x2 + 14logsinx + cosx2 + C= x2 + 12logcosx + sinx + C
If ∫0ax2 - 11 - xdx = - 12, then the value of a is equal to
- 1
1
2
- 2
The value of the integral ∫01x1 - x5dx is equal to
16
17
67
142
If [x] denotes the greatest integer less than or equal to x, then the value of ∫02x - 2 + xdx is equal to
3
4
∫01xe- 5xdx is equal to
125 - 6e- 525
125 + 6e- 525
- 125 - 6e- 525
125 + 125e- 5
∫5x dx1 - x3 is equal to
52x - 12 - 5x - 1 + C
52x - 12 + 5x - 1 + C
53x - 12 + 52x - 1 + C
53x - 12 - 52x - 1 + C
∫dxx - x is equal to
2logx - 1 + C
2logx + 1 + C
logx - 1 + C
12logx + 1 + C
∫dx4sin2x + 3cos2x
34tan-12tanx3 + C
123tan-1tanx3 + C
23tan-12tanx3 + C
123tan-12tanx3 + C
∫secxdxcos2x is equal to
2sin-1tanx
tan-1tanx2 + C
sin-1tanx
32tan-1tanx3 + C