∫1 - x1 + xdx is equal to
sin-1x + 1 - x2 + C
sin-1x - 21 - x2 + C
2sin-1x - 1 - x2 + C
sin-1x - 1 - x2 + C
∫dx1 + tanx is equal to
12 + 12logcosx + sinx + C
x2 + 12logcosx - sinx + C
12 + 12logcosx - sinx + C
x2 + 12logcosx + sinx + C
If ∫0ax2 - 11 - xdx = - 12, then the value of a is equal to
- 1
1
2
- 2
The value of the integral ∫01x1 - x5dx is equal to
16
17
67
142
If [x] denotes the greatest integer less than or equal to x, then the value of ∫02x - 2 + xdx is equal to
3
4
∫01xe- 5xdx is equal to
125 - 6e- 525
125 + 6e- 525
- 125 - 6e- 525
125 + 125e- 5
∫5x dx1 - x3 is equal to
52x - 12 - 5x - 1 + C
52x - 12 + 5x - 1 + C
53x - 12 + 52x - 1 + C
53x - 12 - 52x - 1 + C
B.
Let I = ∫5x1 - x3Let 5x1 - x3 = A1 - x + B1 - x2 + C1 - x35x = A1 - x2 + B1 - x + C⇒ 5x = A1 - 2x + x2 + B1 - x + COn equating the coefficients of x2 , x and constant terms, we get 0 = A, 5 = - 2A - B, 0 = A + b + C∴ 5 = - 20 - B ⇒ B = - 5and 0 = 0 - 5 + C⇒ C = 5∴ 5x1 - x3 = 0 + - 51 - x3 + 51 - x3
On integrating both sides, we get
∫5x1 - x3dx = ∫- 51 - x2dx + ∫51 - x3dx= - 5- 1- 11 - x1 + 5- 1- 21 - x2= - 51 - x + 521 - x2 + C= 52x - 12 + 5x - 1 + C
∫dxx - x is equal to
2logx - 1 + C
2logx + 1 + C
logx - 1 + C
12logx + 1 + C
∫dx4sin2x + 3cos2x
34tan-12tanx3 + C
123tan-1tanx3 + C
23tan-12tanx3 + C
123tan-12tanx3 + C
∫secxdxcos2x is equal to
2sin-1tanx
tan-1tanx2 + C
sin-1tanx
32tan-1tanx3 + C