∫tanxsinxcosxdx is equal to :
2tanx + c
cotx + c
tan2x + c
∫dxx2 + 4x + 13 is equal to :
logx2 + 4x + 130 + c
13tan-1x + 23 + c
log2x + 4 + c
1x2 + 4x + 13 + c
∫01ddxsin-12x1 + x2dx is equal to :
0
π
π2
π4
C.
Let I = ∫01ddxsin-12x1 + x2dxLet x = tanθ∴ I = ∫dxsin-1sin2θdx = 2∫01ddxtan-11 - tan-10 = 2 . π4 = π2
∫0π2sinxsinx + cosxdx is equal to
π3
∫sinxsinx - αdx is equal to
x - αcosα + sinαlogsinx - α + c
sinx - α + sinx + c
x - αcosα + logsinx - α + c
cosx - α + cosx + c
∫13xdx is :
13xlog13 + c
13x + 1 + c
14x + c
14x + 1 + c
∫0π2sin2xlogtanxdx
1
∫0π2xsinxdx is equal to :
∫x2ax + b- 2dx is equal to :
2a2x - balogax + b + c
2a2x - balogax + b - x2aax + b
2a2x + balogax + b - x2aax + b + c
If f(t) is an odd function, then ∫0xftdt is :
an odd function
an even function
neither even nor odd