∫exlogaexdx is equal to :
axlogae + c
ex1 + logea + c
aex + c
aexlogeae + c
∫ex - 1dx is equal to :
2ex - 1 - tan-1ex - 1 + c
ex - 1 - tan-1ex - 1 + c
ex - 1 + tan-1ex - 1 + c
2ex - 1 + tan-1ex - 1 + c
If I1 = ∫sin-1xdx and I2 = ∫sin-11 - x2dx then :
I1 = I2
I2 = π2I1
I1 + I2 = π2x
I1 + I2 = π2
∫cos-37xsin-117xdx is equal to:
logsin47x + c
47tan47x + c
- 74tan-47x + c
logcos37x + c
∫sinθ + cosθsin2θdθ is equal to :
logcosθ - sinθ + sin2θ
logsinθ - cosθ + sin2θ
sin-1sinθ - cosθ
sin-1sinθ + cosθ
C.
Let I = ∫sinθ + cosθ1 + sin2θ - 1dθ = ∫sinθ + cosθ1 - sinθ - cosθ2dθLet sinθ - cosθ = t⇒ cosθ + sinθdθ = dt∴ I = ∫11 - t2dt = sin-1sinθ - cosθ
∫π6π3dx1 + tanx is equal to :
π12
π2
3π2
2π
∫- ππsin4xsin4x + cos4xdx is equal to :
π
The value of 2sinx2sinx + 2cosxdx is :
2
π4
If f is continuous function, then :
∫- 22fxdx = ∫02fx - f- xdx
∫- 352fxdx = ∫- 610fx - 1dx
∫- 35fxdx = ∫- 44fx - 1dx
∫- 35fxdx = ∫- 26fx - 1dx
If ∫xx + 1dx = Ax + Btan-1x + c, then :
A = 1, B = 1
A = 1, B = 2
A = 2, B = 2
A = 2, B = - 2