∫x3sintan-1x41 + x8dx is equal to :
14costan-1x4 + c
14sintan-1x4 + c
- 14costan-1x4 + c
14sec-1tan-1x4 + c
In = ∫0π4tannxdx, then limn→∞nIn + In + 2 equals :
12
1
∞
zero
If ∫xfxdx = fx2, then f(x) is equal to :
ex
e- x
log(x)
ex22
∫02x2dx is :
2 - 2
2 + 2
2 - 1
- 2 - 3 + 5
D.
∫02x2dx= ∫01x2dx + ∫12x2dx + ∫23x2dx + ∫32x2dx= ∫010dx + ∫121dx + ∫222dx + ∫323dx= x12 + 2x23 + 3x32= 2 - 1 + 23 - 22 + 6 - 33= - 2 - 3 + 5
∫0πcosxdx is equal to :
- 2
- 1
∫sin2xsin3xsin5xdx is equal to :
15logesin5x - 13logesin3x + c
13logesin3x - 15logesin5x
13logesin3x + 15logesin5x
- 12cos2x + 13logesin3x
∫exlogsinx + cotxdx is equal to
excot(x) + c
exlog(sin(x)) + c
exlog(sin(x)) + tan(x) + c
ex + sin(x) + c
∫- 1010loga + xa - xdx is equal to :
0
- 2log(a + 10)
2loga + 10a - 10
2log(a + 10)
Define f(x) = ∫0xsintdt, x ≥ 0, Then :
f is increasing only in the interval 0, π2
f is decreasing in the interval 0, π
f attains maximum at x = π2
f attains minimum at x = π
Let f(x) = sin2πx1 + π2. Then, ∫fx + f- xdx is equal to :
x + c
x2 - cosπx2π + c
x2 - sin2πx4π + c