Define f(x) = ∫0xsintdt, x ≥ 0, Then :

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

301.

x3sintan-1x41 + x8dx is equal to :

  • 14costan-1x4 + c

  • 14sintan-1x4 + c

  • - 14costan-1x4 + c

  • 14sec-1tan-1x4 + c


302.

In0π4tannxdx, then limnnIn + In +2 equals :

  • 12

  • 1

  • zero


303.

If xfxdx = fx2, then f(x) is equal to :

  • ex

  • e- x

  • log(x)

  • ex22


304.

02x2dx is :

  • 2 - 2

  • 2 + 2

  • 2 - 1

  • - 2 - 3 + 5


Advertisement
305.

0πcosxdx is equal to :

  • 12

  • - 2

  • 1

  • - 1


306.

sin2xsin3xsin5xdx is equal to :

  • 15logesin5x - 13logesin3x + c

  • 13logesin3x - 15logesin5x

  • 13logesin3x + 15logesin5x

  • - 12cos2x + 13logesin3x


307.

exlogsinx + cotxdx is equal to

  • excot(x) + c

  • exlog(sin(x)) + c

  • exlog(sin(x)) + tan(x) + c

  • ex + sin(x) + c


308.

- 1010loga + xa - xdx is equal to :

  • 0

  • - 2log(a + 10)

  • 2loga + 10a - 10

  • 2log(a + 10)


Advertisement
Advertisement

309.

Define f(x) = 0xsintdt, x  0, Then :

  • f is increasing only in the interval 0, π2

  • f is decreasing in the interval 0, π

  • f attains maximum at x = π2

  • f attains minimum at x = π


A.

f is increasing only in the interval 0, π2

fx = 0xsintdt, x  0 f'x = sinxNow, f'x > 0 in 0 < x < π2 fx is increasing in 0 < x < π2


Advertisement
310.

Let f(x) = sin2πx1 + π2. Then, fx + f- xdx is equal to :

  • 0

  • x + c

  • x2 - cosπx2π + c

  • x2 - sin2πx4π + c


Advertisement