The value of ∫0π2sin3xsinx + cosxdx is

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

311.

Let f(x) = x - [x], for every real x, where [x] is the greatest integer less than or equal to x. Then, - 11fxdx is :

  • 1

  • 2

  • 3

  • 0


312.

If 0x2ftdt = xcosπx, then the value of f(4) is :

  • 1

  • 14

  • - 1

  • - 14


313.

If f(x) = 2 - xcosx2 + xcosx and g(x)= logex, (x > 0) then the value of integral - π4π4g(f(x))dx is :

  • loge(3)

  • loge(1)

  • loge(2)

  • logee


314.

sin5x2sinx2dx is equal to :

(where c is a constant of integration)

  • x + 2sinx + 2sin2x + c

  • 2x + sinx + sin2x + c

  • 2x + sin2x + 2sinx + c

  • x + sin2x + 2sinx + c


Advertisement
315.

If dxx31 + x623 = xf(x)(1 +x6)13 + C where C is a constant of integration, then the function f(x) is equal to :

  • 12x2

  • - 16x3

  • 3x2

  • - 12x3


316.

Let f(x) = 0xg(t)dt, where g is a non–zero even function. If f(x + 5) = g(x), then 0xf(t)dt equals :

  • x + 55g(t)dt

  • 25x + 5g(t)dt

  • 5x +5g(t)dt

  • 5x + 55g(t)dt


317.

If f : R  R is a differentiable function and f(2) = 6, then limx26f(x)2t dtx - 2 is

  • 0

  • 24f'(2)

  • 12f'(2)

  • 2f'(2)


318.

The value of the integral 01xcot-11 - x2 +x4dx is

  • π2 - 12loge2

  • π4 - loge2

  • π4 - 12loge2

  • π2 - loge2


Advertisement
319.

If esecxsecxtanxfx + secxtanx + sec2xdx = esecxf(x) +C, then a possible choice of f(x) is :

  • xsecx + tanx + 12

  • secx + tanx - 12

  • secx + tanx + 12

  • secx - tanx - 12


Advertisement

320.

The value of 0π2sin3xsinx + cosxdx is :

  • π - 24

  • π - 28

  • π - 14

  • π - 12


C.

π - 14

Use 0afxdx = 0afa - xdx

Simplify we get, given integral =π - 14


Advertisement
Advertisement