Considering four sub-intervals, the value of ∫042xdx&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

12ex1x - 1x2dx is equal to

  • e - e22

  • e22 - e

  • e22 + e

  • e22 - 2


342.

The value of - ππsin3xcos2xdx is equal to

  • 1

  • 2

  • 3

  • 0


343.

x - 1x + 1dx is equal to

  • 2x2 + 1 + sin-1x +c

  • x2 - 1 - sin-1x +c

  • 2x2 - 1 + sin-1x +c

  • x2 - 12 + sin-1x +c


344.

The value of - 11logx - 1x +1dx is

  • 1

  • 2

  • 0

  • 4


Advertisement
Advertisement

345.

Considering four sub-intervals, the value of 042xdx  by Simpson's rule is

  • 648

  • 653

  • 6212

  • 618


B.

653

Here, a = 0, b = 4, n = 4

        h = b - an = 4 - 04 = 1

x 0 1 2 3 4
y = 2x 1 2 4 8 16
  y0 y1 y2 y3 y4

By Simpson's rule

022xdx = h3y0 +y4 + 4y1 + y3 + 2y2

          = 131 + 16 + 42 + 8 + 24= 1317 + 40 + 8 = 653


Advertisement
346.

If I1sin-1xdx and I2sin-11 - x2dx, then

  • I1 = I2

  • I2 = π2I1

  • I1 + I2 = π2x

  • I1 + I2 = π2


347.

sinθ + cosθsin2θ is equal to

  • logcosθ - sinθ + sin2θ + c

  • logsinθ - cosθ + sin2θ + c

  • sin-1sinθ - cosθ + c

  • sin-1sinθ + cosθ + c


348.

π6π3dx1 + tanx is equal to

  • π12

  • π2

  • π6

  • π4


Advertisement
349.

If f is a continuous function, then

  • - 22f(x)dx = 02f(x) - f(- x)dx

  • - 352f(x)dx = - 610fx - 1dx

  • - 35fxdx = - 44fx - 1dx

  • - 35fxdx = - 26fx - 1dx


350.

1 + sinx1 + cosxdx is equal to

  • xtanx2 + c

  • log1 + cosx +c

  • cotx2 +c

  • logx + sinx +c


Advertisement