∫π6π3dx1 + tanx is equal to from Mathem

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

12ex1x - 1x2dx is equal to

  • e - e22

  • e22 - e

  • e22 + e

  • e22 - 2


342.

The value of - ππsin3xcos2xdx is equal to

  • 1

  • 2

  • 3

  • 0


343.

x - 1x + 1dx is equal to

  • 2x2 + 1 + sin-1x +c

  • x2 - 1 - sin-1x +c

  • 2x2 - 1 + sin-1x +c

  • x2 - 12 + sin-1x +c


344.

The value of - 11logx - 1x +1dx is

  • 1

  • 2

  • 0

  • 4


Advertisement
345.

Considering four sub-intervals, the value of 042xdx  by Simpson's rule is

  • 648

  • 653

  • 6212

  • 618


346.

If I1sin-1xdx and I2sin-11 - x2dx, then

  • I1 = I2

  • I2 = π2I1

  • I1 + I2 = π2x

  • I1 + I2 = π2


347.

sinθ + cosθsin2θ is equal to

  • logcosθ - sinθ + sin2θ + c

  • logsinθ - cosθ + sin2θ + c

  • sin-1sinθ - cosθ + c

  • sin-1sinθ + cosθ + c


Advertisement

348.

π6π3dx1 + tanx is equal to

  • π12

  • π2

  • π6

  • π4


A.

π12

π6π3dx1 + tanx= π6π3cosxsinx + cosxdx        ...(i)= π6π3cosπ2 - xsinπ2 - x + cosπ2 - xdx I = π6π3sinxcosx + sinxdx     ...(ii)On adding Eqs. (i) and (ii), we get    2I = π6π31dx = xπ6π3        = π3 - π6 = π6 I = π12


Advertisement
Advertisement
349.

If f is a continuous function, then

  • - 22f(x)dx = 02f(x) - f(- x)dx

  • - 352f(x)dx = - 610fx - 1dx

  • - 35fxdx = - 44fx - 1dx

  • - 35fxdx = - 26fx - 1dx


350.

1 + sinx1 + cosxdx is equal to

  • xtanx2 + c

  • log1 + cosx +c

  • cotx2 +c

  • logx + sinx +c


Advertisement