∫12ex1x - 1x2dx is equal to
e - e22
e22 - e
e22 + e
e22 - 2
The value of ∫- ππsin3xcos2xdx is equal to
1
2
3
0
∫x - 1x + 1dx is equal to
2x2 + 1 + sin-1x + c
x2 - 1 - sin-1x + c
2x2 - 1 + sin-1x + c
x2 - 12 + sin-1x + c
The value of ∫- 11logx - 1x + 1dx is
4
Considering four sub-intervals, the value of ∫042xdx by Simpson's rule is
648
653
6212
618
If I1 = ∫sin-1xdx and I2 = ∫sin-11 - x2dx, then
I1 = I2
I2 = π2I1
I1 + I2 = π2x
I1 + I2 = π2
∫sinθ + cosθsin2θdθ is equal to
logcosθ - sinθ + sin2θ + c
logsinθ - cosθ + sin2θ + c
sin-1sinθ - cosθ + c
sin-1sinθ + cosθ + c
∫π6π3dx1 + tanx is equal to
π12
π2
π6
π4
A.
∫π6π3dx1 + tanx= ∫π6π3cosxsinx + cosxdx ...(i)= ∫π6π3cosπ2 - xsinπ2 - x + cosπ2 - xdx⇒ I = ∫π6π3sinxcosx + sinxdx ...(ii)On adding Eqs. (i) and (ii), we get 2I = ∫π6π31dx = xπ6π3 = π3 - π6 = π6⇒ I = π12
If f is a continuous function, then
∫- 22f(x)dx = ∫02f(x) - f(- x)dx
∫- 352f(x)dx = ∫- 610fx - 1dx
∫- 35fxdx = ∫- 44fx - 1dx
∫- 35fxdx = ∫- 26fx - 1dx
∫1 + sinx1 + cosxdx is equal to
xtanx2 + c
log1 + cosx + c
cotx2 + c
logx + sinx + c