∫0π2dx1 + tanx is equal to from Mathematic

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

371.

116x2 + 9dx is equal to

  • 13tan-14x3 + c

  • 14tan-14x3 + c

  • 112tan-14x3 + c

  • 112tan-13x4 + c


372.

The value of 4711 - x2x2 + 11 - x2dx is

  • 1

  • 1/2

  • 3/2

  • 0


373.

tanx + cotxdx

  • 2tan-1tanxtanx + C

  • 2tan-1tanx - 12tanx + C

  • tanx2 . tan-1cotx + 12tanx + C

  • tanx2 . tan-1cotx + 12tanx + C


374.

x2xsinx + cosx2dx is equal to

  • sinx + cosxxsinx + cosx + C

  • xsinx - cosxxsinx + cosx + C

  • sinx - xcosxxsinx + cosx + C

  • None of these


Advertisement
375.

0xxdx1 + cosαsinx, 0 < α < π is equal to

  • παsinα

  • παcosα

  • πα1 +sinα

  • πα1 - cosα


376.

- π2π2cosx1 + exdx

  • 1

  • 0

  • - 1

  • None of these


Advertisement

377.

0π2dx1 + tanx is equal to

  • π

  • π2

  • π3

  • π4


D.

π4

Given, I = 0π2dx1 + tanx           I = 0π2cosxsinx + cosxdx            ...i           I = 0π2cosπ2 - xsinπ2 - x + cosπ2 - xdx             = 0π2sinxcosx + sinxdx           ...iiOn adding Eqs. (i) and (ii), we get    2I = 0π2sinx + cosxsinx + cosxdx        = 0π2dx = π2 I = π4


Advertisement
378.

By Simpson rule taking n = 4, the value of the integral 0111 + x2dx is equal to

  • 0.788

  • 0.781

  • 0.785

  • None of the above


Advertisement
379.

The value of 0πlog1 +cosxdx is

  • - π2log2

  • πlog12

  • πlog2

  • π2log2


380.

The value of 344 - xx - 3dx is

  • π16

  • π8

  • π4

  • π2


Advertisement