The value of ∫dxxxn + 1 is
1nlogxnxn + 1 + C
logxn + 1xn + C
1nlogxn + 1xn + C
logxnxn + 1 + C
The value of ∫coslogxdx is
12sinlogx + coslogx + C
x2sinlogx + coslogx + C
x2sinlogx - coslogx + C
12sinlogx - coslogx + C
The value of ∫ex1 + sinx1 + cosxdx is
12exsecx2 + C
exsecx2 + C
12extanx2 + C
extanx2 + C
The value of ∫13sinx - cosx + 3dx is
logtanx2 + 12tanx2 + 1 + C
12log2tanx2 + 1tanx2 + 1 + C
log2tanx2 + 1tanx2 + 1 + C
2log2tanx2 + 1tanx2 + 1 + C
The value of ∫sin2xsin4x + cos4xdx is
tan-1cot2x + C
tan-1cos2x + C
tan-1sin2x + C
tan-1tan2x + C
The value of ∫1 + secxdx is
sin-12sinx + C
2sin-12sinx/2 + C
2sin-12sinx + C
2sin-12x/2 + C
The value of ∫x2 + 1x4 + x2 + 1dx is
13tan-1x - 1/x3 + C
123logx - 1/x - 3x - 1/x + 3 + C
tan-1x + 1/x3 + C
tan-1x - 1/x3 + C
A.
Let I = ∫x2 + 1x4 + x2 + 1dx = ∫1 + 1x2x2 + 1 + 1x2dx = ∫1 + 1x2x - 1x2 + 32dx = ∫dt32 + t2 Let t = x - 1x ⇒ dt = 1 + 1x2dx = 13tan-1t3 + C = 13tan-113x - 1x + C = 13tan-1x - 1/x3 + C
The value of ∫01x21 - x232dx is
132
π8
π16
π32
The value of ∫0∞x1 + xx2 + 1dx is
2π
π4
∫18 + 2x - x2dx is equal to
13sin-1x - 13 + c
sin-1x + 13 + c
13sin-1x + 13 + c
sin-1x - 13 + c