∫0π2secxnsecxn +cscxndx is equal to from Mathem

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

391.

4ex - 252ex - 5dx = Ax + Blog2ex - 5 + c, then

  • A = 5 and B = 3

  • A = 5 and B = - 3

  • A = - 5 and B = 3

  • A = - 5 and B = - 3


392.

- π2π2log2 - sinx2 + sinxdx is equal to

  • 1

  • 3

  • 2

  • 0


393.

x2 + 2ax + tan-1xx2 + 1dx is equal to

  • loga . ax + tan-1x + c

  • x + tan-1xlogloga + c

  • ax + tan-1xloga + c

  • logax + tan-1x + c


394.

If fxlogsinxdx = loglogsinx + c, then f(x) is equal to

  • cot(x)

  • tan(x)

  • sec(x)

  • csc(x)


Advertisement
Advertisement

395.

0π2secxnsecxn +cscxndx is equal to

  • π2

  • π3

  • π4

  • π6


C.

π4

0π2secxnsecxn +cscxndx           ...i   = 0π2secπ2 - xnsecπ2 - xn +cscπ2 - xndx   = 0π2cscxncscxn +secxndx    ...iiOn adding Eq. (i) and (ii), we get2I = 0π2secxn + cscxnsecxn +cscxndx    = 0π2dx = x0π2 2I = π2   I = π4


Advertisement
396.

01xtan-1xdx =

  • π4 + 12

  • π4 - 12

  • 12 - π4

  • - π4 - 12


397.

If 19 - 16x2dx = αsin-1βx + c, then α + 1β =

  • 1

  • 712

  • 1912

  • 912


398.

If 0π2logcosxdx = π2log12, then 0π2logsecxdx =

  • π2log12

  • 1 - π2log12

  • 1 + π2log12

  • π2log2


Advertisement
399.

1x2 + 4x2 + 9dx = Atan-1x2 + Btan-1x3 + C, then A - B =

  • 16

  • 130

  • - 130

  • - 16


400.

If x - 5x - 7dx = Ax2 - 12x +35 + logx - 6 + x2 - 12x + 35 + C, then A =

  • - 1

  • 12

  • - 12

  • 1


Advertisement