∫4ex - 252ex - 5dx = Ax + Blog2ex - 5 + c, then
A = 5 and B = 3
A = 5 and B = - 3
A = - 5 and B = 3
A = - 5 and B = - 3
∫- π2π2log2 - sinx2 + sinxdx is equal to
1
3
2
0
∫x2 + 2ax + tan-1xx2 + 1dx is equal to
loga . ax + tan-1x + c
x + tan-1xlogloga + c
ax + tan-1xloga + c
logax + tan-1x + c
If ∫fxlogsinxdx = loglogsinx + c, then f(x) is equal to
cot(x)
tan(x)
sec(x)
csc(x)
∫0π2secxnsecxn +cscxndx is equal to
π2
π3
π4
π6
∫01xtan-1xdx =
π4 + 12
π4 - 12
12 - π4
- π4 - 12
If ∫19 - 16x2dx = αsin-1βx + c, then α + 1β =
712
1912
912
If ∫0π2logcosxdx = π2log12, then ∫0π2logsecxdx =
π2log12
1 - π2log12
1 + π2log12
π2log2
∫1x2 + 4x2 + 9dx = Atan-1x2 + Btan-1x3 + C, then A - B =
16
130
- 130
- 16
If x - 5x - 7dx = Ax2 - 12x + 35 + logx - 6 + x2 - 12x + 35 + C, then A =
- 1
12
- 12
D.
Let I = ∫x - 5x - 7dx = ∫x - 5x - 5x - 7x - 5dx ∵ rationalising = ∫x - 5x2 - 5x - 7x + 35dx = ∫x - 5x2 - 12x + 35 = 12∫2x - 10x2 - 12x + 35dx = 12∫2x - 12 + 2x2 - 12x + 35dx = 12∫2x - 12x2 - 12x + 35dx + ∫1x2 - 12x + 35dx = x2 - 12x + 35 + ∫1x2 - 12x + 36 - 1 + C ∵ Let x2 - 12x + 35 = t ⇒ 2x - 12dx = dt = x2 - 12x + 35 + ∫1x - 62 - 12dx + C = x2 - 12x + 35 + logx - 6 + x2 - 12x + 35 + C∴ I = Ax2 - 12x + 35 + logx - 6 + x2 - 12x + 35 + C = 1 . x2 - 12x + 35 + logx - 6 + x2 - 12x + 35 + COn comparing both sides, we get A= 1.