The tangent to the graph of a continuous function y = f(x) at the

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

401.

03xdx = ..., where [x] is greatest integer function

  • 3

  • 0

  • 2

  • 1


402.

sec8xcscxdx =

  • sec8x8 + c

  • sec7x7 + c

  • sec6x6 + c

  • sec9x9 + c


Advertisement

403.

The tangent to the graph of a continuous function y = f(x) at the point with abscissa x = a forms with the X-axis an angle of π3 and at the point with abscissa x = b an angle of π4, then what the value of integral abf'x + f''xdx

(where f'(x) the derivative off w.r.t. xwhich is assumed to be continuous and similarly f"(x) the double derivative of f w.r.t. x)

  • eb3ea

  • eb - 3ea

  • eb - 3ea

  • - eb - 3ea


B.

eb - 3ea

Given, the tangent to the graph of function y = f(x) at the point x = a forms with the X-axis an angle of π3.

 dydxx = a = tanπ3 = 3

and the tangent to the graph of function y = f(x) at the point x = b forms with the X-axis an angle of π4.

 dydxx = b = tanπ4 = 1 f'a = 3 and f'b = 1Now, I = abexf'x + f''xdx           = abexf'x + exf''xdx           = abddxexf'xdx           = exf'xab           = ebf'b - eaf'a           = eb . 1 - ea3        f'b = 1 and f'a = 3           = eb - 3ea


Advertisement
404.

The point of inflection of the function y = 0xt2 - 3t + 2dt is

  • 32, 34

  • - 32, - 34

  • - 12, - 32

  • 12, 32


Advertisement
405.

The value of integral dxxx2 - a2

  • c - 1asin-1ax

  • c - 1acos-1ax

  • sin-1ax + c

  • c + 1asin-1ax


406.

The value of 012sin-1x1 - x232dx is

  • π2 - log2

  • π4 - 12log2

     

  • π4 + 12log2

  • π - 12log2


407.

Integral of 12 + cosx

  • 13tan-112tanx +C

  • 23tan-113tanx2 +C

  • - sinxlog2 + cosx + C

  • sinxlog2 + cosx + C


408.

dxx4 + x6 is equal to

  • - 1 + x2x + C

  • 1 + x2x + C

  • - 1 - x2x + C

  • - x2 - 1x + C


Advertisement
409.

If sin-1xcos-1xdx = f-1xπ2x - xf-1x - 21 - x2

π21 - x2 + 2x +C, then

  • f(x) = sin(x)

  • f(x) = cos(x)

  • f(x) = tan(x)

  • None of these


410.

If 0πxfsin2x + sec2xdx = k0π2fsin2x + sec2xdx, then the value of k is

  • π2

  • π

  • - π2

  • None of these


Advertisement