If ∫fxdx = gx + c, then 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

441.

ex2 + exex + 1dx is equal to

  • logex + 1ex + 2 + c

  • logex + 2ex + 1 + c

  • ex + 1ex + 2 + c

  • ex + 2ex + 1 + c


442.

32 x3 logx2dx is equal to

  • 8x4(log(x))2 + c

  • x48logx2 - 4logx + 1 + c

  • 8logx2 - 4logx + c

  • x38logx2 - 2logx + c


443.

cosx - 1sinx + 1exdx is equal to :

  • excosx1 + sinx + c

  • c - exsinx1 + sinx

  • c - ex1 + sinx

  • c - excosx1 + sinx


Advertisement

444.

If fxdx = gx +c, then f-1xdx is equal to :

  • xf-1(x) + c

  • f(g-1(x)) + c

  • xf-1(x) - g(f-1(x)) + c

  • g-1(x) + c


C.

xf-1(x) - g(f-1(x)) + c

Let I = f-1xdx                   ...iand       f(x)dx = gx +c     ...ii From (i) let f-1x = u   x = fu dx = f'udu    I = uf'uduIntegration by parts, we get        I = ufu - fudu        I = ufu - gu + c       usin Eq. (ii) On putting u = f-1x, fu = xWe get, I = xf-1x - gf-1x + c


Advertisement
Advertisement
445.

The value of 12dxx1 + x4 is :

  • 14log1732

  • 14log3217

  • log172

  • 14log172


446.

The value of the integral abxdxx + a + b - x is :

  • π

  • 12b - a

  • π/2

  • b - a


447.

0π2cotxcotx + tanxdx is equal to :

  • 1

  • - 1

  • π2

  • π4


448.

0π2xsin2xcos2xdx is equal to :

  • π232

  • π216

  • π32

  • None of these


Advertisement
449.

- π3π3xsinxcos2xdx is :

  • 134π + 1

  • 4π3 - 2logtan5π12

  • 4π3 + logtan5π12

  • None of these


450.

tan-1x31 + x2dx is equa to :

  • 3tan-1x2 + c

  • tan-1x44 + c

  • tan-1x4 + c

  • None of these


Advertisement