∫ex2 + exex + 1dx is equal to
logex + 1ex + 2 + c
logex + 2ex + 1 + c
ex + 1ex + 2 + c
ex + 2ex + 1 + c
∫32 x3 logx2dx is equal to
8x4(log(x))2 + c
x48logx2 - 4logx + 1 + c
8logx2 - 4logx + c
x38logx2 - 2logx + c
∫cosx - 1sinx + 1exdx is equal to :
excosx1 + sinx + c
c - exsinx1 + sinx
c - ex1 + sinx
c - excosx1 + sinx
If ∫fxdx = gx + c, then ∫f-1xdx is equal to :
xf-1(x) + c
f(g-1(x)) + c
xf-1(x) - g(f-1(x)) + c
g-1(x) + c
The value of ∫12dxx1 + x4 is :
14log1732
14log3217
log172
14log172
The value of the integral ∫abxdxx + a + b - x is :
π
12b - a
π/2
b - a
∫0π2cotxcotx + tanxdx is equal to :
1
- 1
π2
π4
∫0π2xsin2xcos2xdx is equal to :
π232
π216
π32
None of these
∫- π3π3xsinxcos2xdx is :
134π + 1
4π3 - 2logtan5π12
4π3 + logtan5π12
∫tan-1x31 + x2dx is equa to :
3tan-1x2 + c
tan-1x44 + c
tan-1x4 + c
B.
Let I = ∫tan-1x31 + x2dx ...iLet tan-1x = t ...ii⇒ 11 + x2dx = dt∴ From Eq. (i)I = ∫t3dt = t44 + c = tan-1x44 + c ∵ from Eq. (ii)