∫0πxdx1 + sinx is equal to :
- π
π2
π
None of these
C.
Let I = ∫0πxdx1 + sinx ...i = ∫0ππ - xdx1 + sinπ - x = ∫0ππ - xdx1 + sinx ...iiOn adding Eqs. (i) and (ii),2I = ∫0ππdx1 + sinx⇒ 2I = π∫0π1 - sinx1 - sin2xdx⇒ 2I = π∫0πsec2x - secxtanxdx⇒ 2I = πtanx - secx0π⇒ 2I = π0 - - 1 - 0 - 1⇒ 2I = 2π⇒ I = π
∫dxxx5 + 1 is equal to :
15logx5x5 + 1 + c
15logx5 + 1x5 + c
∫x + sinx1 + cosxdx is equal to
xtanx2 + c
xsec2x2 + c
logcosx2 + c
∫0π8cos34θdθ is equal to
53
54
13
16
∫0π2cosx - sinx1 + cosx sinx dx is equal to
0
π4
π6
∫dxxx7 + 1 is equal to
logx7x7 + 1 + c
17logx7x7 + 1 + c
logx7 + 1x7 + c
17logx7 + 1x7 + c
∫- 111 - xdx is equal to
- 2
2
4
∫xexdx is equal to
2x - ex - 4xex + c
2x - 4x + 4ex + c
2x + 4x + 4ex + c
1 - 4x ex + c
∫dxx2 + 2x + 2 is equal to
sin-1x + 1 + c
sinh-1x + 1 + c
tanh-1x + 1 + c
tan-1x + 1 + c
∫02πsinx + sinxdx is equal to
1
8