The function f(x) = ∫0xlog1 - x1 + xdx is
an even function
an odd function
a periodic function
None of these
∫sin2x1 + cos2xdx =
- 12log1 + cos2x + c
2log1 + cos2x + c
12log1 + cos2x + c
- log1 + cos2x + c
∫ex1 + sinx1 + cosxdx =
extanx2 + c
extanx + c
ex1 + sinx1 - cosx + c
∫1 + tanxe- xcosxdx is equal to
e- xtanx + c
e- xsecx + c
exsecx + c
∫π4π2csc2xdx is equal to
- 1
1
0
12
B.
∫π4π2csc2xdx = - cotxπ4π2 = - cotπ2 + cotπ4 = - 0 - 1 = 1
∫0π4log1 + tanxdx is equal to
π8loge2
π4log2e
π4loge2
π8loge12
∫x3 + 3x2 + 3x + 1x + 15dx is equal to
- 1x + 1 + c
15logx + 1 + c
logx + 1 + c
tan-1x + c
∫cscxcos21 + logtanx2dx is equal to :
sin21 + logtanx2 + c
tan1 + logtanx2 + c
sec21 + logtanx2 + c
- tan1 + logtanx2 + c
∫dxxx6 - 16 is equa to :
13sec-1x34 + c
cosh-1x34 + c
112sec-1x34 + c
sec-1x34 + c
If I1 = I1 = ∫0π2sinxdx and I2 = ∫0π2xcosxdx, then which one of the following is true ?
I1 + I2 = π2
I2 - I1= π2
I1 + I2 = 0
I1 = I2