∫sinxcosx1 - sin4xdx is equal to
12sin-1sin2x + C
12cos-1sin2x + C
tan-1sin2x + C
tan-12sin2x + C
A.
Let I = ∫sinxcosx1 - sin4xdxPut sin2x = t ⇒ 2sinxcosxdx = dt∴ I = ∫dt21 - t2 = 12sin-1t + C = 12sin-1sin2x + C
∫etan-1x1 + x1 + x2dx is equal to
xetan-1x + c
etan-1x + c
12etan-1x + c
12xetan-1x + c
∫cscx - acscxdx is equal to
- 1sinalogsinxcscx - a + c
- 1sinalogsinx - asinx + c
1sinalogsinxcscx - a + c
1sinalogsinx - asinx + c
If f(x) = ∫- 1xtdt, then for any x ≥ 0, f(x) is equal to
1 - x2
121 + x2
1 + x2
121 - x2
∫134 - xx + 4 - xdx is equal to
1
3
2
0
If ∫01fxdx = 5, then the value of ... + ∫01x9fx10dx is equal to
125
625
275
55
If ∫fxsinx . cosxdx = 12b2 - a2logfx + c, where c is the constant of integration, then f(x) is
2abcos2x
2b2 - a2cos2x
2absin2x
2b2 - a2sin2x
If ∫xxx + 1dx = ktan-1m, then (k, m) is
(2, x)
(1, x)
1, x
2, x
∫0π4sinx + cosx3 + sin2xdx is
14log3
log3
12log3
2log3
∫01x1 - x32dx is
- 235
435
2435
- 835