The value of ∫04x - 1dx is
52
5
4
1
If In = ∫0π4tannxdx, where where n is apositive integer, then I10 + I8 is
19
18
17
9
If In = ∫exsinx + cosx1 - sin2xdx is
ex . cscx + C
ex . cotx + C
ex . secx + C
ex . tanx + C
When x > 0, then ∫cos-11 - x21 + x2dx is
2xtan-1x - log1 + x2 + C
2xtan-1x + log1 + x2 + C
If the area between y = mx2 and x = my2 (m > 0) is 1/4 sq units, then the value of m is
± 32
± 23
2
3
B.
Given curves; y = mx2 and y2m= x; m > 0Intersection point of both curves x = mmx22 = m3x4⇒ m3x4 - x = 0⇒ xm3x3 - 1 = 0⇒ xmx - 1m2x2 + 1 + mx = 0⇒ x = 0, x = 1/m and y = 0, y = 1/mWe take only the points = (0, 0) and (1/m, 1/m)Now, the area of the curve= ∫01mxm - mx2dxGiven, 14 = 23m . x32 - m . x3301m⇒ 14 = 23m . 1m32 - m3 . 1m3⇒ 14 = 23m2 - 13m2⇒ 14 = 13m2⇒ m2 = 43∴ m = ± 23
∫π6π3sin3xsin3x + cos3xdx is equal to
π2
π3
π12
π6
If [x] is the greatest integer function not greater than x, then ∫011xdx is equal to
45
66
35
55
If n ∈ N and In = ∫logxndx, then In + nIn - 1 is equal to
logxn + 1n + 1
xlogxn + C
logxn - 1
logxnn
∫cosn - 1xsinn + 1xdx where, n ≠ 0 is equal to
cotnxn + C
- cotn - 1xn - 1 + C
- cotnxn + C
cotn - 1xn - 1 + C
∫x - 1exx + 13dx is equal to
exx + 1 + C
exx + 12 + C
exx + 13 + C
xexx + 1 + C