∫0π21a2 . sin2x + b2 . cos2xdx
π2ab
πb4a
πa2b
πa4b
∫x2 + 2x + 5dx is equal to
12x + 1x2 + 2x + 5 + 2logx + 1 + x2 + 2x + 5 + C
x + 1x2 + 2x + 5 + 12logx + 1 + x2 + 2x + 5 + C
x + 1x2 + 2x + 5 + 2logx + 1 + x2 + 2x + 5 + C
x + 1x2 + 2x + 5 - 2logx + 1 + x2 + 2x + 5 + C
∫x + 3exx + 42dx is equal to
exx + 42 + C
exx + 3 + C
1x + 42 + C
exx + 4 + C
∫cos2x - cos2θcosx - cosθdx is equal to
2sinx + xcosθ
2sinx - xcosθ
2sinx + 2xcosθ
2sinx - 2xcosθ
∫0.23.5xdx is equal to
3.5
4
4.5
3
∫0π2tan7xcot7x + tan7xdx is equal to
π4
π2
π6
π3
A.
Let I = ∫0π2tan7xcot7x + tan7xdx ...i⇒ I = ∫0π2tan7π2 - xcot7π2 - x + tan7π2 - xdx⇒ I = ∫0π2cot7xcot7x + tan7xdx ...iiOn adding Eqs. (i) and (ii), we get 2I = ∫0π2tan7x + cot7xcot7x + tan7xdx = ∫0π21dx = x0π2 = π2∴ I = π4
∫xsec2xdx is equal to
xtanx + logsecx + c
x22secx + logcosx + c
xtanx + logcosx + c
tanx + logcosx + c
∫te3t2dt is equal to
16e3t2 + c
- 16e3t2 + c
16e- 3t2 + c
- 16e- 3t2 + c
∫0πlogsin2xdx is equal to
2πloge12
πloge2
π2loge12
None of these
∫dxxxn + 1 is equal to
1nlogxnxn + 1 + c
1nlogxn + 1xn + c
logxnxn + 1 + c