In = ∫0π4tannxdx, then limn→∞nIn 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

541.

02x2dx is equal to

  • 2 - 2

  • 2 + 2

  • 2 - 1

  • - 2 - 3 + 5


Advertisement

542.

In = 0π4tannxdx, then limnnIn + In + 2 equals

  • 1/ 2

  • 2 sq units

  • 3 sq units

  • 4 sq uits


D.

4 sq uits

Given,   In = 0π4tannxdx In + 2 = 0π4tann + 2xdx                = 0π4tannxtan2xdx                = 0π4tannxdxsec2x - 1dx                = 0π4tannxsec2xdx - 0π4tannxdx                = 0π4tannxsec2xdx - In        In + In + 2 = tann + 1xn + 10π4 = 1n + 1limnnIn + In + 2 = limnnn + 1 = limn11 + 1n                             = 1


Advertisement
543.

010πsinxdx is equal to

  • 20

  • 8

  • 10

  • 18


544.

If I = x0x0 + nhydx, then by Trapezoidal rule I is equal to

  • hy0 + yn + 2y1 + y2 + ... + yn - 1

  • h12y0 + yn + 2y1 + y2 + ... + yn - 1

  • h2y0 + yn + 2y1 + y2 + ... + yn - 1

  • hy0 + yn + 2y1 + y2 + ... + yn - 1


Advertisement
545.

dx1 - x2 is equal to

  • tan-1x + c

  • sin-1x + c

  • 12log1 + x1 - x + c

  • 12log1 - x1 + x + c


546.

cos2x - 1cos2x + 1dx is equal to

  • tanx - x + c

  • x + tanx + c

  • x - tanx + c

  • - x - cotx + c


547.

Suppose f is such that f( - x) = - f(x), for every real x and 01fxdx = 5, then - 10ftdt is equal to

  • 10

  • 5

  • 0

  • - 5


548.

If f(y) = ey, g(y) = y, y > 0 and F(t) = 0tft - y . gydy, then 

  • F(t) = 1 - e- t(1 + t)

  • F(t) = et - (1 + t)

  • F(t) = tet

  • F(t) = te- t


Advertisement
549.

Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies f(x) + g(x) = x2. Then, the value of the integeral 01fxgxdx is

  • e - e22 - 52

  • e + e22 - 32

  • e - e22 - 32

  • e + e22 + 52


550.

- 10dxx2 + 2x + 2 is equal to

  • 0

  • π4

  • π2

  • - π4


Advertisement