∫1 - x1 + xdx is equal to
cos-1x + 1 - xx - 2 + c
cos-1x - 1 - xx - 2 + c
cos-1x + 1 - xx + 2 + c
None of the above
∫logx + 1 + x21 + x2dx is equal to
12logx + 1 + x22 + c
logx + 1 + x22 + c
logx + 1 + x2 + c
∫sin8x - cos8x1 - 2sin2xcos2xdx is equal to
sin2x + c
- 12sin2x + c
12sin2x + c
- sin2x + c
∫dxsinx + sin2x is equal to
16log1 - cosx + 12loglog1 + cosx - 23log1 + 2cosx + c
6log1 - cosx + 2loglog1 + cosx - 23log1 + 2cosx + c
6log1 - cosx + 12loglog1 + cosx + 23log1 + 2cosx + c
∫fxg''x - f''xgxdx is equal to
fxg'x
f'(x)g(x) - f(x)g'(x)
f(x)g'(x) - f'(x)g(x)
f(x)g'(x) + f'(x)g(x)
Correct value of ∫0πsin4xdx is
8π3
2π3
4π3
3π8
∫0π2logsinxdx is equal to
- π2log2
πlog12
- π2log12
log2
A.
Let I = ∫0π2logsinxdx ...i= ∫0π2logsinπ2 - xdx⇒ I = ∫0π2logcosxdx ...iiOn adding Eqs. (i) and (ii), we get2I = ∫0π2log2sinxcosx - log2dx = ∫0π2logsin2xdx - ∫0π2log2dx = ∫0πlogsinxdx - ∫0π2log2dx = ∫0π2logsinxdx - log2x0π2 = - π2log2 - log2π2 - 0∴ I = - π2log2
∫0πcos3xdx is equal to
- 1
0
1π
1
Suppose f is such that f(- x) = - f(x), for every x and ∫01fxdx = 5, then ∫- 10ftdt is equal to
10
5
- 5
Withthehelp of Trapezoidal rule fornumerical integration and the following table
the value of ∫01fxdx is
0.35342
0.34375
0.34457
0.33334