Dividing the interval (1, 2) into four equal parts and using Simpson's rule, the value of will be
0.6932
0.6753
0.6692
0.7132
Taking four subintervals, the value of by usin trapezoidal rule will be
0.6870
0.6677
0.6970
0.5970
∫2018x2017 + 2018x loge2018x2018 + 2018xdx =
log2018x + x2018 + c
2018x + x2018-1 + c
2018x + x2018 + c
∫dxx2 + 4x + 5 =
tan-1x + c
tan-1x + cx + 2
tan-1x + 2 + c
x + 2tan-1x + 2 + c
C.
We have, I = ∫dxx2 + 4x + 5⇒ I = ∫dxx + 22 + 1⇒ I = tan-1x + 2 + c
∫0π2cos2x2 - sin2x2 =
0
1
- 1
None of the above
Evaluate ∫- 21fxdx, where f(x) = 1 - 2x, x ≤ 01 + 2x, x ≥ 0
2
4
6
∫dxxx + 9 is equal to
23tan-1x + C
23tan-1x3 + C
tan-1x + C
tan-1x3 + C
∫x + 12exdx is equal to
xex + C
x2xx + C
(x + 1)ex + C
(x2 + 1)ex + C
∫dxa2sin2x + b2cos2x is equal to
1abtan-1atanxb + C
tan-1atanxb + C
1abtan-1btanxa + C
tan-1btanxa + C
∫0π2sin8xcos2xdx is equal to
π512
3π512
5π512
7π512