If ∫1 - cosxcsc2xdx = fx + c, then fx is equal to
tanx2
cotx2
2tanx2
12tanx2
If In = ∫0nπ4tanxdx, thenI2 + I4, I3 + I5, I4 + I6, . . . , are in
arithmatic progression
geometric progression
harmonic progression
arithmetic-geometric progression
∫a + xa - x + a - xa + xdx = ?
2sin-1xa + c
2asin-1xa + C
2cos-1xa + C
2acos-1xa + C
If ∫sin8x - cos8x1 - 2sin2xcos2xdx = Asin2x + B, then A = ?
- 12
- 1
12
1
∫1 + cos4xcotx - tanxdx
- 14cos4x + C
18cos4x + C
14sin4x + C
- 18cos4x + C
D.
Let I = ∫1 + cos4xcotx - tanxdx= 2cos22xcos2x - sin2xdxsinxcosx= sin2xcos22xdxcos2x= 12∫sin4xdx = - cos4x8 + C
If In = ∫0π4tanndθ for n = 1, 2, 3 . . . , then In + 1 + I n + 1 = ?
0
1n
1n + 1
Let f0 = 1, f0.5 = 54, f1 = 2, f1.5 = 134, and f2 = 5. Using Simson's rule,∫02fxdx = ?
143
76
149
79
∫dxx24 + x2 =
144 + x2 + C
- 144 + x2 + C
- 14x4 + x2 + C
94x4 + x2 + C
∫sec2xcsc4xdx = ?
4
3
2
∫dxx - x2 = ?
2sin-1x + C
2xsin-1x + C
sin-1x + C