If a > 0, then ∫- ππsin2x1 + axdx = ?
π2
π
2π2
aπ
A.
Let I = ∫- ππsin2x1 + axdx . . . iPut x = - x, we getI = - ∫ π- πsin2x1 + axdx . . . iiOn adding eqs i and ii, we get2I = ∫ π- π1 + axsin2x1 + axdx = ∫ π- πsin2xdx= 2∫ 0πsin2xdx = ∫ 0π1 - cos2xdx= x + sin2x20π= π + sin2x2 - 0 - 0⇒ 2I = π⇒ I = π2
The value of the integral ∫04dx1 + x2 obtained by using trapezoidalrule with h = 1 is
6385
tan-14
10885
11385
Let A = 2eiπ- 1i2012, C= ddx1xx = 1,D = ∫e21dxx. If the sum of two roots of the equation Ax3 + Bx2 + Cx - D = 0 is equal to zero, then B is equal to
- 1
0
1
2
∫ ex2 + sin2x1 + cos2xdx = ?
excotx + C
2exsec2x +C
excos2x + C
extanx + C
If ∫ x - sinx1 + cosxdx = xtanx2 + plogsecx2 + C, then p = ?
- 4
4
- 2
If ∫dxxlogx - 2logx - 3 = I + C, then I =?
1xloglogx - 3logx - 2
loglogx - 3logx - 2
loglogx - 2logx - 3
If ∫0bdx1 + x2 = ∫b∞dx1 + x2, then b = ?
tan-113
32
The approximate value of ∫13dx2 + 3x using Simpson's rule and dividing the interval [1, 3] into two equal parts is
13log115
107110
22110
119440
If ∫dxsin3xcosx = gx + c, then gx = ?
- 2cotx
- 2tanx
2cotx
2tanx
If ∫dx1 + xx - x2 = Ax1 -x + B1 - x + C, where C is real constant, then A + B = ?
3