If ∫x3e5xdx = e5x54fx + C,then fx = ?
x35 - 3x252 + 6x53 - 654
5x3 - 52x2 + 53x - 6
53x3 - 15x2 + 30x - 6
53x3 - 75x2 + 30x - 6
∫xx2 + 2x + 22dx = ?
x2 + 2x2 + 2x + 2 - 12tan-1x - 1 + C
x2 - 24x2 + 2x + 2 - 12tan-1x + 1 + C
x2 + 22x2 + 2x + 2 - 12tan-1x + 1 + C
2x - 1x2 + 2x + 2 + 12tan-1x + 1 + C
If ∫loga2 + x2dx = hx + C, then hx = ?
xloga2 + x2 + 2tan-1xa
x2loga2 + x2 + x + atan-1xa
xloga2 + x2 - 2x + 2atan-1xa
x2loga2 + x2 + 2x - a2tan-1xa
For x > 0, if ∫logx5dx = ?xAlogx5 + Blogx4+ Clogx3 + Dlogx2 + Elogx + F + Constant, thenA + B + C + D + E + F = ?
- 44
- 42
- 40
- 36
By the definition of the definite integral, the value of limn→∞1n2 - 1 + 1n2 - 22 + ... 1n2 - n - 12 is equal to
π
π2
π4
π6
∫π4π4x + π42 - cos2xdx is equal to
8π35
2π39
4π239
π263
∫5x + 3x2x2 - 2dx = ?
32x + 1322log2 - x2 + x + C
32x + 1342logx + 2x - 2 + C
32x + 1342logx - 2x + 2 + C
35x + 532logx + 2x - 2 + C
If y = tan-1x1 + 1 - x2 + sin2tan-11 - x1 + x, then dydx = ?
1 - 2x21 - x2
1 - 2xx1 - x2
2x + 1x1 - x
2 - x21 - x2
If ∫010fxdx= 5, then ∑k = 110∫01fk - 1 + xdx = ?
50
10
5
20
C.
Let I = ∫01fk - 1 + xdxNow, put k - 1 + x = t⇒dx = dtAlso, when x= 0 then t = k - 1and when x = 1, then t = k∴I = ∫k - 1kftdt = ∫k - 1kf(x)dx ∵ t is dummy variableNow, ∑k = 110∫01fk - 1 + xdx = ∑k = 110∫k - 1kfxdx = ∫01f(x)dx + ∫12f(x)dx + ... + ∫910f(x)dx = ∫010fxdx= 5
∫xe - 1 + ex - 1xe + exdx
- 1elogxe + ex + C
- elogxe + ex + C
1elogxe + ex + C
elogxe + ex + C