If ∫e2x + 2ex - e - x - 1eex +e - xdx = gxeex + e - x + C, where c is a constant of integration, then g(0) is
1
e
e2
2
The value of ∫ - π2π211 +esinxdx is :
π4
π2
3π2
π
B.
I = ∫ - π2π211 +esinxdx I = ∫ - π2π2esinx1 +esinxdx Replace x → a + b + x∫abfxdx = ∫abfa + b + xdx2I = ∫ - π2π21dx⇒ I = 12 ∫ - π2π2dxI = 12x- π2π2⇒ I = π2
If ∫cosθ5 + 7sinθ - 2cos2θdθ = AlogeBθ + C, where C is a constant of integration, then BθAcan be:
2sinθ + 15sinθ + 3
52sinθ + 1sinθ + 3
2sinθ + 1sinθ + 3
5sinθ + 32sinθ + 1
The general solution of the differential equation
1 + x2 + y2 +x2y2 + xydydx = 0 where C is constant of integration
1 + y2 + 1 + x2 = 12loge1 + x2 - 11 + x2 +1 +C
1 + y2 + 1 + x2 = 12loge1 + x2 + 11 +x2 - 1 + C
1 + y2 - 1 + x2 = 12loge1 + x2 - 11 +x2 + 1 + C
1 + y2 - 1 + x2 = 12loge1 + x2 + 11 +x2 - 1 + C
If I1 = ∫011 - x50100dx and I2 = ∫011 - x50101dx I2 = αI1 Then α = ?
50495050
50515050
50505051
50505049
The integral ∫12ex . x22 + logexdx = ?
e(2e - 1)
e(4e + 1)
4e2 - 1
e(4e - 1)
The common difference of the A.P. b1,b2,....,bm is 2 more than common difference of A.P. a1,a2,...,an. If a40 = –159, a100 = – 399 and b100 = a70, then b1is equal to :
127
81
- 127
- 81