A plane passes through (2, 3, - 1) and is perpendicular to the li

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMatch The Following

61.

In the triangle with vertices at A(6, 3), B(- 6, 3) and C(- 6, - 3), the median through A meets BC at P, the line AC meets the x-axis at Q, while R and S respectively denote the orthocentre and centroid of the triangle. Then the correct matching of the coordinates of points in List-I to List-II is

      List-I                        List-II

(i)    P                      (A)    (0, 0)

(ii)   Q                      (B)    (6, 0)

(iii)   R                     (C)    (- 2, 1)

(iv)   S                     (D)    (- 6, 0)

                               (E)    (- 6, - 3)

                               (F)    (- 6, 3)

A. (i) (ii) (iii) (iv) (i) D A E C
B. (i) (ii) (iii) (iv) (ii) D B E C
C. (i) (ii) (iii) (iv) (iii) D A F C
D. (i) (ii) (iii) (iv) (iv) B A F C

 Multiple Choice QuestionsMultiple Choice Questions

62.

In ABC the mid points of the sides AB, BC and CA are respectively (l, 0, 0), (0, m, 0) and (0, 0, n). Then, AB2 + BC2 + CA2l2 + m2 + n2 = ?

  • 2

  • 4

  • 8

  • 16


63.

The perimeter of the triangle with vertices at 1, 0, 0, 0, 1, 0 and 0, 0, 1 is 

  • 3

  • 2

  • 22

  • 32


64.

If a line in the space makes angle α, β and γ with the coordinate axes, thencos2α + cos2β  + cos2γ + sin2α +sin2β + sin2γ =?

  • - 1

  • 0

  • 1

  • 2


Advertisement
65.

A plane meets the coordinate axes at A, B, C so that the centroid of the triangle ABC is (1, 2, 4). Then, the equation of the plane is

  • x + 2y +4z =12

  • 4x + 2y + z = 12

  • x + 2y + 4z = 3

  • 4x + 2y + z = 3


66.

If (2, 3, - 3) is one end of a diameter of the sphere x2 + y+ z- 6x - 12y - 2z + 20 = 0, then the other end of the diameter is

  • (4, 9, - 1)

  • (4, 9, 5)

  • (- 8, - 15, 1)

  • (8, 15, 5)


67.

The locus of a point such that the sum of its distances from the points (0, 2) and (0, - 2) is 6, is

  • 9x2 - 5y2 = 45

  • 5x2 + 9y2 = 45

  • 9x2 + 5y2 = 45

  • 5x2 - 9y2 = 45


68.

The ratio in which the line joining (2, - 4, 3) and ( - 4, 5, - 6) is divided by the plane 3x + 2y + z - 4 = 0 is

  • 2 : 1

  • 4 : 3

  • - 1 : 4

  • 2 : 3


Advertisement
Advertisement

69.

A plane passes through (2, 3, - 1) and is perpendicular to the line having direction ratios 3, - 4, 7. The perpendicular distance from the origin to this plane is

  • 374

  • 574

  • 674

  • 1374


D.

1374

The equation of the plane passes through the point (2, 3, - 1) is

ax - 2 + by - 3 + cz + 1 = 0   . . . iwhere a, b, c are the direction ratio of the normal to the plane.Also, given the plane is perpendicular to the line whose direction ratio is (3, - 4, 7). So, that line and the normal of the plane are parallel. a3 = b- 4 = c7 = k a = 3k, b = - 4k, c = 7kFrom eq i3kx - 2 - 4ky - 3 + 7kz +1 = 0 3x - 4y + 7z + 13 = 0   . . .iiNow, perpendicular distance from the origin to this plane = 3 × 0 - 4 × 0 + 7 × 0 + 139 + 16 + 49= 1374


Advertisement
70.

If the angles made by a straight line with thecoordinate axes are, α, π2 - α, β, then β is equal to

  • 0

  • π6

  • π2

  • π


Advertisement