If 2sinh-1a1 - a2 = log1 + x1 - x, then x is equal to
a
1a
1 - a2
11 - a2
If x =sin2tan-12 and y = sin12tan-143, then
x > y
x = y
x = 0 = y
x< y
A.
Given, x =sin2tan-12 and y = sin12tan-143⇒ x = sin2tan-12Let tan-12 = θ ⇒ tanθ = 2∴ x = sin2θ = 2tanθ1 + tan2θ = 221 + 22 = 45Now, y = sin12tan-143Let tan-143 = ϕtanϕ = 43, cosϕ = 35Then, y = sinϕ2= 1 - cosϕ 2 = 1 - 352 = 15∴ x > y
If coshx = 54, then cosh3x = ?
6116
6316
6516
6163
In a∆ABC, if <A = 90°, then cos-1Rr2 + r3 = ?
90°
30°
60°
45°
If cotcos-1x = sectan-1ab2 - a2 : b > a, then x =
b2b2 - a2
b2 - a2ab
a2b2 - a2
b2 - a2a
2π - sin-145 + sin-1513 + sin-11665 = ?
π2
π
3π2
- π2