The value of limx→252 - x is from Mathe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

The value of limnnn2 + 12 + nn2 + 22 + ... + nn2 + n2 is

  • π4

  • log2

  • 0

  • 1


42.

The value of limn1n + 1 + 1n + 2 + ... + 16n is

  • log2

  • log6

  • 1

  • log3


43.

limxπ2acotx - acosxcotx - cosx

  • logeπ2

  • loge2

  • logea

  • a


Advertisement

44.

The value of limx252 - x is

  • 102

  • does not exist


D.

does not exist

limx 252 - xLHL = limx  2-52 - x       = limh  052 - 2 - h × 2 + 2 - h2 + 2 - h       = limh  052 + 2 + h2 - 2 + h = 

RHL = limx  2+52 - x       = limh  052 - 2 - h × 2 + 2 + h2 + 2 + h       = limh  052 + 2 + h2 - 2 - h = -         LHL  RHL

Thus, limit does not exist. 


Advertisement
Advertisement
45.

The value of limx2e3x - 6 - 1sin2 - x

  • 32

  • 3

  • - 3

  • - 1


46.

dndxnlogx is equal to

  • n - 1!Xn

  • n !Xn

  • n - 2!Xn

  • - 1n - 1n - 1!Xn


47.

The value of limxa2x2 + ax + 1 - a2x2 + 1 is

  • 12

  • 1

  • 2

  • None of these


48.

limx01 - cos2xsin5xx2sin3x equals

  • 103

  • 310

  • 65

  • 56


Advertisement
49.

limx1 - 4x - 13x - 1 is equal to

  • e12

  • e- 12

  • e4

  • e3


50.

limx0ax - bxex - 1 is equal to 

  • logeab

  • logeba

  • logeab

  • logea + b


Advertisement