The value of limn→∞nn2 + 12 + nn2 + 22 + ... + nn2 + n2 is
π4
log2
0
1
The value of limn→∞1n + 1 + 1n + 2 + ... + 16n is
log6
log3
limx→π2acotx - acosxcotx - cosx
logeπ2
loge2
logea
a
The value of limx→252 - x is
102
+ ∞
- ∞
does not exist
The value of limx→2e3x - 6 - 1sin2 - x
32
3
- 3
- 1
dndxnlogx is equal to
n - 1!Xn
n !Xn
n - 2!Xn
- 1n - 1n - 1!Xn
D.
Let y = log(x)
On differentiating w.r.t. x from 1 to n times, we get
y1 = 1x, y2 = - 1x2y3 = 2x3, y4 = - 6x4yn = - 1n - 1n - 1!xn
The value of limx→∞a2x2 + ax + 1 - a2x2 + 1 is
12
2
None of these
limx→01 - cos2xsin5xx2sin3x equals
103
310
65
56
limx→∞1 - 4x - 13x - 1 is equal to
e12
e- 12
e4
e3
limx→0ax - bxex - 1 is equal to
logeab
logeba
logea + b