If the normal to the curve y = f(x) at (3, 4) makes an angle 3π4 with the positive x-axis, then f'(3) is equal to :
- 1
34
1
- 34
limh→0x + h - xh is equal to
12x
1x
2x
x
limθ→05θcosθ - 2sinθ3θ + tanθ is equal to
3/4
- 3/4
0
None of these
If cos(x + y) = ysin(x), then dydx is equal to
- sinx + y + ycosxsinx + sinx + y
sinx + y + ycosxsinx + sinx + y
None of the above
A.
Given, cosx + y = ysinxOn differentiating w.r.t x, we get - sinx + y1 + dydx = ycosx + sinxdydx⇒ dydxsinx + sinx + y = - sinx + y - ycosx⇒ dydx = - sinx + y + ycosxsinx + sinx + y
limx→2+x - 2x - 2 is equal to
2
- 2
y = tan-11 + x2 + 1 - x21 + x2 - 1 - x2, then dydx is equal to
11 + x2
- 12
- x1 - x4
x1 + x21 - x4
If limx→aax - xaxx - aa = - 1, then
a = 1
a = 0
a = e
a = 1e
limx→5x - 5x - 5 equals
limx→π3sinπ3 - x2cosx - 1 is equal to
12
13
- 13
23
If 2x + 2y =2x + y, then the value of dydx at x = y = 1 is