If f(x) = sinxx, x ≠ 00,   

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

If limx0x1 + acosx - bsinxx3 = 1, then

  • a = - 52, b = - 12

  • a = - 32, b = - 12

  • a = - 32, b = - 52

  • a = - 52, b = - 32


72.

If α and β are the rooots of ax2 + bx + c = 0, then limxα1 - cosax2 + bx + cx - α2 is equal to

  • a22α - β2

  • - a22α - β2

  • 0

  • 1


73.

If sin(x + y) = log(x + y), then dydx is equal to

  • - 1

  • 1

  • 2

  • - 2


74.

If x = acos3t and y = asin3t, then dydxt = π4 is equal to

  • 1

  • - 1

  • 0


Advertisement
75.

The anti-derivative F of f defined by f(x) = 4x3 - 6x2 + 2x + 5, F(0) = 5, is

  • x4 - 2x3 + x2 + 5x

  • 12x2 - 12x + 2

  • 16x4 - 18x3 + 4x2 + 5x

  • x4 - 2x3 + x2 + 5x + 5


76.

limx0x- 11x

  • 0

  • 1

  • - 1

  • Does not exist


77.

If f(x) = sinxx for x  00         for x = 0

where [x] denotes the greatest integer less than or eual to x, then limx0fx is equal to

  • 1

  • - 1

  • 0

  • Does not exist


78.

If limnlogn + r - lognn = 2log2 - 12, then limn1nλn + 1λn + 2λ ... n + nλ1n is equal to

  • 4λe

  • 4eλ

  • 4e1λ

  • e4λ


Advertisement
79.

limx0sinsinx - sinxax3 + bx5 + c = - 112, then

  • a = 2, b  R, c = 0

  • a = - 2, b  R, c = 0

  • a = 1, b  R, c = 0

  • a = - 1, b  R, c = 0


Advertisement

80.

If f(x) = sinxx, x  00,         x = 0, where [x] denotes the gretest function less than or equal to x, then limx0fx is equal to

  • 1

  • 0

  • - 1

  • Does not exist


D.

Does not exist

Given, fx = sinxx, x  00,         x = 0         RHL = limx0+fx = limx0+sinxx               = limh0sin0 + h0 + h = 1                 ...i          from RHS of zero, 0 + h = 0       LHL = limx0-fx = limx0-sinxx              = limh0sin0 - h0 - h = sin- 1- 1from LHS of zero, 0 - h = - 1              = sin1                                         ...iiFrom Eqs (i) and (ii), we get       LHL  RHLThus, limx0fx does not exist


Advertisement
Advertisement