limx→π6 3sinx - 3cosx6x - π is equal to :
3
13
- 13
If a > 0, limx→a ax - xaxx - aa = - 1, then a is equal to :
0
1
e
2e
The value of limn→∞1n3∑k=1nk2x is
x
x2
x3
x4
If f: R → R is an even function having derivatives of all orders, then an odd function among the following is
f''
f'''
f' + f''
f'' + f'''
B.
Since, f is an even function.Let fx = cosx f'x = sinx f''x = - cosx f'''x = sinxSince, sinx is an odd funcuon.∴ In f''', it is an odd function.Therefore option (b) is correct.
If x > 0, xy = ex - y, then dydx is equal to
11 + logx2
logx1 + logx2
logx1 + logx22
logx21 + logx
limx→0 x2sinπx is equal to
does not exist
∞
If 0 < p <q, then limn→∞qn + pn1n = ?
p
q
limx→∞x2 + 2x - 1 - x = ?
12
4
If l1 = limx→2 + x + x, l2 = limx→2 - 2x - x and l3 = limx→π2cosxx - π2, then :
l1 < l2 < l3
l2 < l3 < l1
l3 < l2 < l1
l1 < l3 < l2
If limx→0cos4x + acos2x + bx4 is finite, then the values of a, b are respectively :
5, - 4
- 5, - 4
- 4, 3
4, 5