If f : - 2,  2 → R

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

limx0 tanx - sinxx2 = ?

  • 0

  • 1

  • 12

  • - 12


112.

If f(x) = x + sinx for x  - π2, π2, then its left hand derivative at x = 0 is

  • 0

  • - 1

  • - 2

  • - 3


113.

If u = ux, y = siny + ax - y + ax2, then it implies

  • uxx = a2 . uyy

  • uyy = a2uxx

  • uxx = - a2 . uyy

  • uyy = - a2uxx


114.

limxx + 6x + 1x + 4 = ?

  • e4

  • e6

  • e5

  • e


Advertisement
115.

The coordinates of the point P on the curve x = aθ + sinθ, y = a1 - cosθ, where the tangent is inclined at an angle π4 to x-axis, are

  • aπ4 - 1, a

  • aπ2 + 1, a

  • aπ2, a

  • (a, a)


Advertisement

116.

If f :- 2,  2  R is defined by fx = 1 + cx - 1 - cxx for - 2  x  0x + 3x + 1 for 0  x  2continuous on - 2,  2, then c is equal to

  • 23

  • 3

  • 32

  • 32


B.

3

Given,  f :- 2,  2  R fx = 1 + cx - 1 - cxx for - 2  x  0x + 3x + 1 for 0  x  2Now, LHL = limx0 -fx= limh0 1 - ch - 1 + ch - h × 1 - ch + 1 + ch1 - ch +1 + ch= limh0 1 - ch - 1 + ch- h1 - 0 + 1 + 0= limh0  - 2ch- h1 + 1 = cand RHL = limx0 +fx= limh0  f0 +h = limh0 0 + h +30 + h + 1limh0 h + 3h + 1 = 0 + 30 + 1 = 3Since, f is continuous ar x = 0LHL = RHL  c = 3


Advertisement
117.

If fx = xtan-1x, then limx1fx - f1x - 1 = ?

  • π +34

  • π4

  • π + 14

  • π +24


118.

The value of c in the Lagrange's mean value theorem for f(x) = x - 2 in the interval [2, 6] is

  • 92

  • 52

  • 3

  • 4


Advertisement
119.

If gx = xx for x> 2, then limx2 gx - g2x - 2 = ?

  •  - 1

  • 0

  • 1/2

  • 1


120.

limxπ22x - πcosx = ?

  • 0

  • 1/2

  •  - 2

  • 5


Advertisement