If a2 + b2 + c2 = -2 and  then f(x) is a polynomial of degree

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If A2 – A + I = 0, then the inverse of A is

  • A + I

  • A

  • A – I

  • A – I

231 Views

Advertisement

12.

If a2 + b2 + c2 = -2 and straight f left parenthesis straight x right parenthesis space equals space open vertical bar table row cell 1 plus straight a squared straight x end cell cell left parenthesis 1 plus straight b squared right parenthesis straight x end cell cell left parenthesis 1 plus straight c squared right parenthesis space straight x end cell row cell left parenthesis 1 plus straight a squared right parenthesis straight x end cell cell 1 plus straight b squared straight x end cell cell left parenthesis 1 plus straight c squared right parenthesis space straight x end cell row cell left parenthesis 1 plus straight a squared right parenthesis straight x end cell cell left parenthesis 1 plus straight b squared right parenthesis straight x end cell cell 1 plus straight c squared straight x end cell end table close vertical bar then f(x) is a polynomial of degree

  • 1

  • 0

  • 2

  • 2


C.

2

straight f left parenthesis straight x right parenthesis space equals space open vertical bar table row cell 1 space plus left parenthesis straight a squared plus straight b squared plus straight c squared plus 2 right parenthesis straight x end cell cell left parenthesis 1 plus straight b squared right parenthesis straight x end cell cell left parenthesis 1 plus straight c squared right parenthesis straight x end cell row cell 1 plus left parenthesis straight a squared plus straight b squared space plus straight c squared space plus 2 right parenthesis straight x end cell cell 1 plus straight b squared straight x end cell cell left parenthesis 1 plus straight c squared right parenthesis straight x end cell row cell 1 plus space left parenthesis straight a squared plus straight b squared space plus straight c squared plus 2 right parenthesis straight x end cell cell left parenthesis 1 plus straight b squared right parenthesis straight x end cell cell 1 plus straight c squared straight x end cell end table close vertical bar
Applying space straight C subscript 1 space rightwards arrow with space on top space straight C subscript 1 space plus straight C subscript 2 plus space straight C subscript 3
space equals space open vertical bar table row 1 cell left parenthesis 1 plus straight b squared right parenthesis space straight x end cell cell left parenthesis 1 plus straight c squared right parenthesis space straight x end cell row 1 cell 1 plus straight b squared space straight x end cell cell left parenthesis 1 plus straight c squared right parenthesis space straight x end cell row 1 cell left parenthesis 1 plus straight b squared right parenthesis space straight x end cell cell 1 plus straight c squared space straight x end cell end table close vertical bar space therefore space straight a squared space plus straight b squared space plus straight c squared space plus 2 space equals space 0
straight f left parenthesis straight x right parenthesis space equals space space open vertical bar table row 0 cell straight x minus 1 end cell 0 row 0 cell 1 minus straight x end cell cell straight x minus 1 end cell row 1 cell left parenthesis 1 plus straight b squared right parenthesis space straight x end cell cell 1 plus straight c squared space straight x end cell end table close vertical bar space space semicolon space Applying space straight R subscript 1 space rightwards arrow space straight R subscript 1 minus straight R subscript 2
straight f left parenthesis straight x right parenthesis space equals space left parenthesis straight x minus 1 right parenthesis squared
Hence space degree space equals space 2
154 Views

Advertisement
13.

Let A open parentheses table row 0 0 cell negative 1 end cell row 0 cell negative 1 end cell 0 row cell negative 1 end cell 0 0 end table close parentheses. The only correct statement about the matrix A is

  • A is a zero matrix

  • A2 = I

  • A−1 does not exist

  • A−1 does not exist

218 Views

14.

Let space equals space open parentheses table row 1 cell negative 1 end cell 1 row 2 1 cell negative 3 end cell row 1 1 1 end table close parentheses space left parenthesis 10 right parenthesis space straight B space equals space open parentheses table row 4 2 2 row cell negative 5 end cell 0 straight alpha row 1 cell negative 2 end cell 3 end table close parentheses.If B is the inverse of matrix A, then α is

  • -2

  • 5

  • -2

  • -2

216 Views

Advertisement
15.

The linear system of equations

8x - 3y - 5z = 05x - 8y + 3z = 03x + 5y - 8z = 0

has

  • Only zero solution

  • Only finite number of non-zero solution

  • No non-zero solution

  • Infinitely many non-zero solution


16.

Let P be the set of non-singular matrices of order 3 over R and Q be the set of all orthogonal of matrices of order 3 over R. Then,

  • P is proper subset of Q

  • Q is proper subset of P

  • Neither P is proper subset of Q nor Q is proper subset of P

  • P  Q = ϕ, the void set


17.

Let A = 111011001. Then, for positive integer n, An is

  • 1nn20n2n00n

  • 1nnn + 1201n001

  • 1n2n0nn200n2

  • 1n2n - 10n + 12n200n + 12


18.

Let a, b, c be such that b(a + c)  0.

If aa +1a - 1- bb +1b - 1cc - 1c + 1 + a + 1b + 1c - 1a - 1b - 1c + 1(- 1)n + 2a(- 1)n + 2b(- 1)nc = 0, then the value of n is 

  • any integer

  • zero

  • any even integer

  • any odd integer


Advertisement
19.

If x, y and z are greater than 1, then the value of

1logxylogxzlogyx1logyzlogzxlogzy1 is

  • logx . logy . logz

  • logx + logy + logz

  • 0

  • 1 - logx . logy . logz


20.

Let A be a 3 x 3 matrix and B be its adjoint matrix. If I B = 64, then A is equal to

  • ± 2

  • ± 4

  • ± 8

  • ± 12


Advertisement