The system 1- 1235- 326axyz = 3b2 h

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

151.

The multiplicative inverse of A = cosθ- sinθsinθcosθ is

  • - cosθsinθ- sinθ- cosθ

  • cosθsinθ- sinθcosθ

  • - cosθ- sinθsinθ- cosθ

  • cosθsinθsinθ- cosθ


152.

If A = 110215121, then a11A21 + a12A22 + a13A23 is equal to

  • 1

  • 0

  • - 1

  • 2


153.

If A = 22- 32, B = 0- 110, then (B- 1A- 1)- 1 is equal to

  • 2- 223

  • 22- 23

  • 2- 322

  • 1- 1- 23


154.

If matrix A = 1243 such that AX = ϕ,then X is equal to

  • 15132- 1

  • 15424- 1

  • 15- 324- 1

  • 15- 12- 14


Advertisement
155.

The inverse of the matrix 10033052- 1 is

  • - 13- 30031092- 3

  • - 13- 3003- 10- 9- 23

  • - 133003- 10- 9- 23

  • - 13- 300- 3- 10- 9- 23


156.

For a invertible matrix A if A(adjA) = 100010 then A =

  • 100

  • - 100

  • 10

  • - 10


157.

If the inverse of the matrix α14- 1231623 does not exist, then the value of α is

  • 1

  • - 1

  • 0

  • - 2


Advertisement

158.

The system 1- 1235- 326axyz = 3b2 has no solutions, if

  • a = - 5, b  5

  • a = - 5, b = 5

  • a  - 5, b = 5

  • a  - 5, b  5


A.

a = - 5, b  5

1- 1235- 326axyz = 3b2The augment matrix of given system isA|B = 1- 1235- 326a3b2R2  R2 - 3R1, givesA|B = 1- 1208- 926a3b - 92R3  R3 - 2R1, givesA|B = 1- 1208- 908a - 43b - 9- 4R3  R3 - R2, givesA|B = 1- 1208- 900a + 53b - 95 - bWe know that,For no solutionRank A < Rank A|B a + 5 = 0 and 5 - b  0            a = - 5, b  5


Advertisement
Advertisement
159.

If 3- 1063x1 + - 2x3 = 89, then the value of x is

  • - 38

  • 7

  • - 29

  • None of these


160.

Consider A and B two square matrices of same order. Select the correct alternative.

  • AB must be greater than A

  • 1111 is not unit matrix

  • A + B must be greater than A

  • If AB = 0, either A or B must be zero matrix


Advertisement