If A = 1201, then by the principle of Mathematical induction, prove that An = 12n01
The value of 2, 6, 10 ... (4n - 6)(4n - 2) is equal to
C(2n, n)
(n + 1)(n + 2)(n + 3) ... (2n)
n! P (2n, n)
None of above
D.
2 . 6 . 10 ... 4n - 64n - 2= 2n1 . 3 . 5 ... 2n - 32n - 1= 2n1 . 2 . 3 . 4 . 5 . ... . 2n - 32n - 22n - 12 . 4 . 6 ... 2n - 22n= 2n × 2n!2n1 . 2 . 3 . ... . n= 2n!n! = Pn2n
Using mathematical induction, the numbers an 's are defined by,a0 = 1, an + 1 = 3n2 + n + an, n ≥ 0Then an = ?
n3 + n2 + 1
n3 - n2 + 1
n3 - n2
n3 + n2