Suppose that E1 and E2 are two events of a random experiment such

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice with six faces (numbered1 to 6) and let Ek = {(a, b) ∈ S : ab = k} for k 1. If pk + P(Ek) for k  1, then the correct among the following, is

  • p1 <  P30 < P4  < P6 

  • p36 <  P6 < P2  < P4 

  • p1 <  P11 < P4  < P6 

  • p36 <  P11 < P6  < P4 


252.

For k = 1, 2, 3 the box Bk contains k red balls and        (k + 1) white balls. Let P(B1) = 12, P(B2) = 13 and P(B3) = 16. A box is selected at 36 random and a ball is drawn from it. If a redball is drawn, then the probability that it has come from box B, is

  • 3578

  • 1439

  • 1013

  • 1213


253.

The distribution of a random variable X is given below
X = x - 2 - 1 3
P(X = x) 1/10 k 1/5 2k 3/10 k

  • 110

  • 210

  • 310

  • 710


254.

If X is a Poisson variate such that P(X = 1) = P(X = 2), then P(X = 4) is equal to

  • 12e2

  • 13e2

  • 23e2

  • 1e2


Advertisement
255.

 A and B are events of a random experimentsuch that PA U B = 45, PA U B = 710 and P(B) = 25, then P(A) = ?

  • 910

  • 810

  • 710

  • 35


 Multiple Choice QuestionsMatch The Following

Advertisement

256.

Suppose that E1 and E2 are two events of a random experiment such that P(E1) = 1/4, P(E2/E1) and P(E1/E2) = 1/4, observe the lists given below

        List I                        List II

(A)    P(E2)                  (i) 1/4

(B)    PE1  E2           (ii) 5/8

(C)   PE1/ E2             (iii) 1/8

(D)   PE1/E2              (iv) 3/8

                                  (v) 3/8

                                  (vi) 3/4

The correct matching of the List I from the List II is

 

A. (A) (B) (C) (D) (i) (ii) (iii) (vi) (i)
B. (A) (B) (C) (D) (ii) (iv) (v) (vi) (i)
C. (A) (B) (C) (D) (iii) (iv) (ii) (vi) (i)
D. (A) (B) (C) (D) (iv) (i) (ii) (iii) (iv)


A.

(A) (B) (C) (D)

(i)

B.

(A) (B) (C) (D)

(ii)

C.

(A) (B) (C) (D)

(iii)

D.

(A) (B) (C) (D)

(iv)


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

257.

If Ai (i = 1, 2, 3, ... , n) are n independent events with P(Ai) = 11 + i for each i, then the probability that none of Ai occurs is

  • n - 1n + 1

  • nn + 1

  • nn + 2

  • 1n + 1


258.

Suppose A and B are two events such that PA  B = 325 and PB - A = 825. Then, PB is equal to

  • 1125

  • 311

  • 111

  • 911


Advertisement
259.

Suppose that a random variable X follows Poisson distribution. If P(X = 1) = P(X = 2) then P(X = 5) is equal to

  • 23e- 2

  • 34e- 2

  • 415e- 2

  • 78e- 2


260.

If the mean and variance of a binomial variable X are 2 and 1 respectively, then P(X  1) is equal to

  • 23

  • 1516

  • 78

  • 45


Advertisement