If the magnitude of the coefficient of x7 in the expansion of ax2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

191.

If the magnitude of the coefficient of x7 in the expansion of ax2 + 1bx8, where a, b are positive numbers, is equal to the magnitude of the coefficient of x-7 in the expansion of ax2 - 1bx8, then a and b are connected by the relation

  • ab = 1

  • ab = 2

  • a2b = 1

  • ab2 = 2


A.

ab = 1

Let the term containing x7 in the expansion of ax2 + 1bx8 is Tr + 1.

 Tr + 1 = Cr8ax28 - r1bxr              = Cr8a8 - rbrx16 - 3rSince, this term contains x7     16 - 3r = 7              3r = 9  r = 3 Coefficient of x7 in the expansion ofax - 1bx28 = C38 . a5b3Also, the term containing x- 7 in the expansion of ax - 1bx28 is TR + 1.

TR + 1 = CR8ax28 - R1bx2R           = CR8a8 - R . x8 - R(- 1)RbRx2R= (- 1)R CR8 a8 - RbR . x8 - 3RSince, this term contains x- 7 8 - 3R = - 7        3R = 15  R = 5 Coefficient of x- 7 in the expansion ofax - 1bx28 = - 15 C58. a3b5According to the given condition

        Tr + 1 = TR + 1 C38 . a5b3 = C58 . a3b5        a2b2 = 1           ab = 1


Advertisement
192.

The mapping f: N N given by f(n) = 1 + n2, n  N where N is the set of natural numbers, is

  • one - to - one and onto

  • onto but not one - to - one

  • one - to - one but not onto

  • neither one - to - one nor onto


193.

The range of the function

fx = tanπ29 - x2 is

  • [0, 3]

  • (0, 3)

  • [0, 3)

  • (0, 3]


194.

If N is a set of natural numbers, then under binary operation a · b = a + b, (N, ·) is

  • quasi-group

  • semi-group

  • monoid

  • group


Advertisement
195.

If f : R  R be such that f(1) = 3 and f'(1) = 6. Then limx0f1 + xf11x equals to

  • 1

  • e1/2

  • e2

  • e3


196.

The domain of the function f(x) = 1log101 - x + x +2 is

  • - 3, - 2.5  - 2.5, - 2

  • - 2, 0  0, 1

  • [0, 1]

  • None of the above


197.

The relation R defined on set A = x : x < 3, x  I by R = x, y : y = x is

  • {(- 2, 2), (- 1, 1), (0, 0), (1, 1), (2, 2)}

  • {(- 2, - 2), (- 2, 2), (-1, 1), (0, 0), (1, - 2), (1, 2), (2, - 1), (2, - 2)}

  • {(0, 0), (1, 1), (2, 2)}

  • None of the above


198.

The domain of the function f(x) = 4 - x2sin-12 - x is

  • [0, 2]

  • [0, 2)

  • [1, 2)

  • [1, 2]


Advertisement
199.

The roots of (x - a)(x - a - 1) + (x - a - 1)(x - a - 2) + (x - a)(x - a - 2) = 0, a  R are always

  • equal

  • imaginary

  • real and distinct

  • rational and equal


200.

Let f(x) = x2 + ax + b, where a, b  R. If f(x) = 0 has all its roots imaginary, then the roots of f(x) + f'(x) + f''(x) = 0 are

  • real and distinct

  • imaginary

  • real and distinct

  • rational and equal


Advertisement