If domain of the function f(x) = x2 - 6x + 7 is (- ∞,&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

261.

For the circuit show below, the Boolean polynomial is

  • ~ p  q  p  ~ q

  • ~ p  q  p  q

  • ~ p  ~ q  q  p

  • ~ p  q  p  ~ q


262.

In a Boolean Algebra B, for all x, y in B, x  x  y is equal to

  • y

  • x

  • 1

  • 0


263.

The value of 1 + 1 -  is

  • 0

  • - 1

  • 1

  • None of the above


264.

f : R  R, then f(x) = xx will be

  • many-one-onto

  • one-one-onto

  • many-one-into

  • one-one-into


Advertisement
265.

The inverse ofthe function y = 2x1 + 2x is

  • x = log211 - 2y

  • x = log21 - 1y

  • x = log211 - y

  • x = log2y1 - y


266.

The domain of the definition of the function

y = 1log101 - x + x +2 is

  • x  - 2

  • - 3 < x  - 2

  • - 2  x < 0

  • - 2  x < 1


267.

Function f : N  N, f(x) = 2x + 3 is

  • many-one onto function

  • many-one into function

  • one-one onto function

  • one-one into function


Advertisement

268.

If domain of the function f(x) = x2 - 6x + 7 is (- , ), then its range is

  • [ - 2, 3]

  • - , 2

  • - , 

  • [ - 2, )


D.

[ - 2, )

Let        y = x2 - 6x + 7 x2 - 6x + 7 - y = 0On comparing with ax2 + bx + c = 0, we geta = 1, b = - 6, and c = (7 - y)Now, using Sridharacharya formula,x = - b ± b2 - 4aca   = 6 ± 36 - 47 - y2   = 6 ± 36 - 28 + 4y2   = 6 ± 4y + 82   = 6 ± 2y + 22   = 3 ± y + 2fx is defined only when         y + 2  0  y  - 2 Range of f(x) = [ - 2, )


Advertisement
Advertisement
269.

Let R = {(1, 1), (1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the set A = {1, 2, 3, 4}. The relation R is

  • a function

  • transitive

  • not symmetric

  • reflexive


270.

The relation R in R defined by R = {(a, b): a  b3), is

  • reflexive

  • symmetric

  • transitive

  • None of these


Advertisement