Inverse of the function f(x) = ex - e- xex&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

301.

For any two real numbers, an operation * defined by a * b  = 1 + ab is

  • neither commutative nor associative

  • commutative but not associative

  • both commutative and associative

  • associative but not commutative


302.

Let f : N  N defined by f(n) = n +12, if n is oddn2,     if n is even, then f is

  • onto but not one-one

  • one-one and onto

  • neither one-one nor onto

  • one-one but not onto


303.

Suppose f(x) = (x + 1)for x  - 1. If g(x) is a function whose graph is the reflection of the graph of f(x) in the line y = x, then g(x) is equal to

  • 1x + 12x > - 1

  • - x - 1

  • x + 1

  • x - 1


304.

Let * be a binary operation defined on R by a * b = a + b4,  a, b  R, then the operation * is

  • commutative and associative

  • commutative but not associative

  • associative but not commutative

  • neither associative nor commutative


Advertisement
305.

Let f : R  R be defined by f(x) = x4, then

  • f may be one-one and onto

  • f is neither one-one nor onto

  • f is one-one and onto

  • f is one-one but not onto


306.

Binary operation * on R - {- 1} defined by a * b = ab + 1 is

  • * is neither associative not commutative

  • * is associative but not commutative

  • * is commutative but not commutative

  • * is associative and commutative


307.

A function f from the set of natural numbers to integers defined by f(n) = n - 12, when n is odd- n2,  when n is even, is

  • one - one but not onto

  • onto but not one - one

  • one - one and onto both

  • neither one - one nor onto


308.

If g(x) = x2 + x - 2 and gof(x) = 2x2 - 5x+ 2, then f(x) is equal to

  • 2x - 3

  • 2x + 3

  • 2x2 + 3x + 1

  • 2x2 - 3x - 1


Advertisement
Advertisement

309.

Inverse of the function f(x) = ex - e- xex + e- x + 2 is

  • logex - 2x - 112

  • logex - 13 - x12

  • logex2 - x12

  • logex - 1x + 112


B.

logex - 13 - x12

Let y = ex - e- xex + e- x + 2                        ex - e- xex + e- x = y - 2  ex - e- x + ex + e- xex - e- x - ex - e- x = y - 2 + 1y - 2 - 1                           2ex- 2e- x = y - 1y - 3                                    e2x = y - 13 - y                                      2x = logey - 13 - y                                       x = 12logey - 13 - y Inverse of f(x) = logex - 13 - x12


Advertisement
310.

If f(x) = x - 1x, x  0, 0  R and g(u) = u2 + 1, u  R then g[f(1)] and f[g(- 1)] is equal to

  • 1, 1/2

  • - 1, 1/2

  • 0, - 1

  • None of these


Advertisement